

Quantum Cyber Security

Lecture 1: Introduction

Petros Wallden

University of Edinburgh

13th January 2026

- ① Logistics
- ② Motivation: Quantum Computers and Security
- ③ Quantum Cyber Security: Definition and Course Content

Logistics

- **Petros Wallden** (Course Organiser & Lecturer)
petros.wallden@ed.ac.uk
- Abbas Poshtvan (Teaching Assistant)
A.Poshtvan@sms.ed.ac.uk

- Lectures
 - Two per week
(Tuesday at 11:10 - 12:00; Thursday at 10:00 - 10:50)
 - In-person at: LG.06 (50 GS Opening Hours) - 40 George Square Lower Teaching Hub
 - Recording (and live-streaming) available
- Tutorials
 - Wednesday 11:10 - 12:00)
 - In-person at: AT 2.11 **MAY CHANGE**
 - **Starts at week 3** (28th January)
- Q& A after classes (altern. contact us via email or at Teams)

- Coursework 25%
 - One assignment released 6th March 2025
 - Due at 20th March 2025 12:00 (details to follow)
- Exam 75%
 - Two questions to choose out of three
 - Further advice at the revision lecture (last)

- ① **Main textbook** (additional references and resources will be given for each topic if not covered in this):

“Quantum Computation and Quantum Information”
by Michael A. Nielsen & Isaac L. Chuang

- ② Review paper: Advances in Quantum Cryptography ([link here](#))
- ③ **Lecture Notes:**
<https://opencourse.inf.ed.ac.uk/qcs/schedule>.
Recordings from the Learn page of the course.
- ④ You can also register at the piazza of the course for questions (mainly for students interactions)

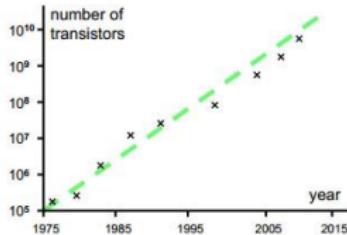
Motivation: Quantum Computers and Security

- Quantum Physics is a very successful theory
- Quantum Physics has many **counter-intuitive properties**
- Size of transistors in microchip are approaching quantum scale

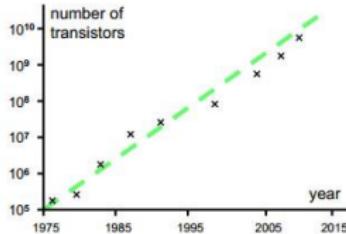
- Quantum Physics is a very successful theory
- Quantum Physics has many **counter-intuitive properties**
- Size of transistors in microchip are approaching quantum scale

Main Question

Can we built a computer using as **basic information elements quantum systems**, and will this give us **extra power**?


- Quantum Physics is a very successful theory
- Quantum Physics has many **counter-intuitive properties**
- Size of transistors in microchip are approaching quantum scale

Main Question


Can we built a computer using as **basic information elements quantum systems**, and will this give us **extra power**?

- Q: What computational power would a QC have?
- A: Greater than classical probabilistic $BPP \subseteq BQP$
- Q: Is it possible to built such computing device?
- A: Yes! No fundamental reason stopping us (engineering)

Moore's Law

Moore's Law

Bit	Qubit
Takes values either 0 or 1	Can behave as being simultaneously 0 and 1: $\alpha 0\rangle + \beta 1\rangle$
Measurement reveals value	Measurement disturbs
Can be copied	<i>Cannot</i> be copied
Strings are described w.r.t. single bits (local)	Strings cannot be described w.r.t. single qubits (non-local)
Behave probabilistically	“Complex probabilities”

- Quantum Computers can solve efficiently **factoring** and **discrete log** (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
⇒ **Tractable problems (for Quantum Computers)**

- Quantum Computers can solve efficiently **factoring** and **discrete log** (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
⇒ **Tractable problems (for Quantum Computers)**

Take-home message

If a scalable quantum computer is built, most of current cryptography breaks (from emails, bank transactions to national security secrets)!

- Quantum Computers can solve efficiently **factoring** and **discrete log** (Factoring, RSAP, Discrete Log, DHP)
- Intractable problems (classical hardness guarantees security)
⇒ **Tractable problems (for Quantum Computers)**

Take-home message

If a scalable quantum computer is built, most of current cryptography breaks (from emails, bank transactions to national security secrets)!

- Known since 1990's
- Requires unprecedented control of quantum systems

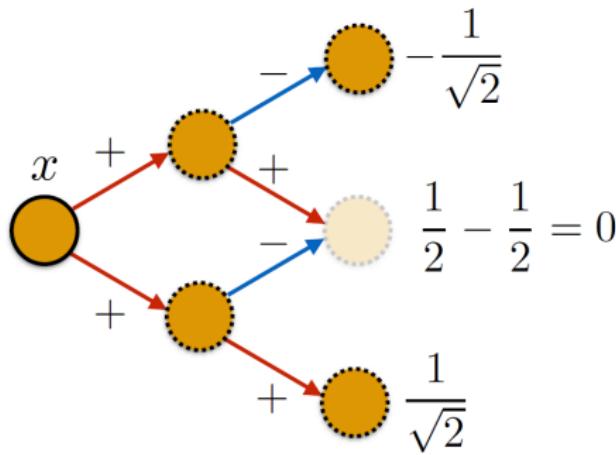
- Huge recent initiative in Quantum Technologies
 - Companies:** Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
 - Governments:** UK, EU, USA, China, Canada, etc (£billions)
 - Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real**

- Huge recent initiative in Quantum Technologies
Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
Governments: UK, EU, USA, China, Canada, etc (£billions)
Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken **retrospectively**

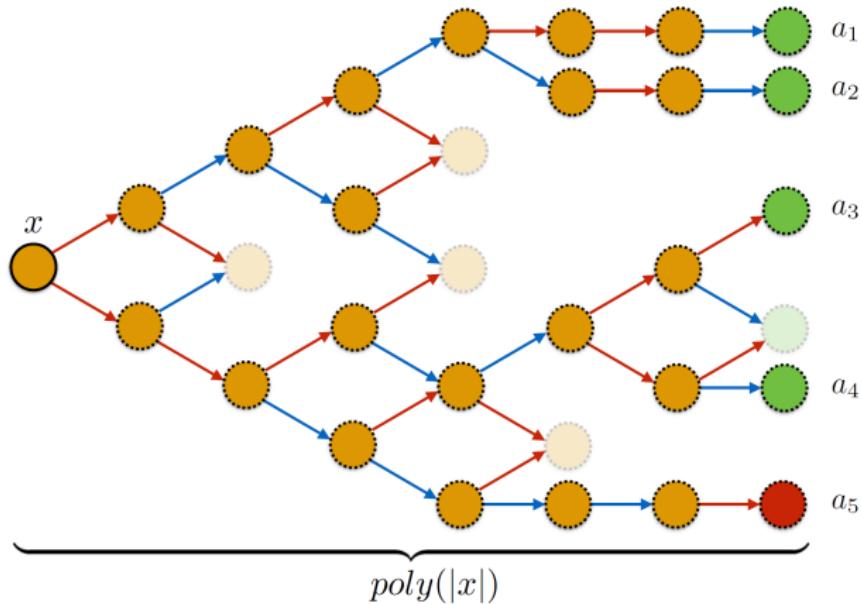
- Huge recent initiative in Quantum Technologies
Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
Governments: UK, EU, USA, China, Canada, etc (£billions)
Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken **retrospectively**
- **Years** (possibly decades), are needed to develop/replace all protocols with “quantum-safe” protocols

- Huge recent initiative in Quantum Technologies
Companies: Google, IBM, Microsoft, Amazon, Intel, D-Wave, Rigetti, IonQ, etc
Governments: UK, EU, USA, China, Canada, etc (£billions)
Developments in Quantum Technologies are accelerating and the prospect of practical QT is becoming real
- Security can be broken **retrospectively**
- **Years** (possibly decades), are needed to develop/replace all protocols with “quantum-safe” protocols

Take-home message


There is a serious medium-time threat that scalable quantum computers will become available. Counter-actions should start now.

How it works


- Could offer significant computational speed-ups
- Can perform more types of operations
- Quantum computers behave as probabilistic computers but with **complex-valued “probabilities”**

How it works

- Could offer significant computational speed-ups
- Can perform more types of operations
- Quantum computers behave as probabilistic computers but with **complex-valued “probabilities”**
- Probability is the mod square of the sum of the complex amplitudes

How it works

- For **speed-up**: need an algorithm that many terms cancel each other
- Non-trivial: need **suitable algorithm design** for each task

- For **speed-up**: need an algorithm that many terms cancel each other
- Non-trivial: need **suitable algorithm design** for each task
- $|\sum_i a_i|^2 = \sum_i |a_i|^2 + \sum_{i \neq j} a_i^* a_j$

First term: classical probabilities

Second term: Amplify or cancel probability (interference)

- For **speed-up**: need an algorithm that many terms cancel each other
- Non-trivial: need **suitable algorithm design** for each task
- $|\sum_i a_i|^2 = \sum_i |a_i|^2 + \sum_{i \neq j} a_i^* a_j$

First term: classical probabilities

Second term: Amplify or cancel probability (interference)

- **Classical systems**: random amplitudes \rightarrow interference \approx zero

On the Power of Quantum Computation

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

On the Power of Quantum Computation

Myth 1

Quantum Computers are much faster in performing operations than Classical Computers

Reality

Quantum computers are **not** faster. Speed-up is obtained because quantum theory allows algorithms/operations impossible for classical computers.

On the Power of Quantum Computation

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

On the Power of Quantum Computation

Myth 2

Quantum Computers simultaneously perform all branches of a (probabilistic) computation and can use all that information

Reality

QC span the space of possibilities in a peculiar way (behave as complex probabilities). However, at the end of the computation the result is obtained by a **single read-out/measurement** and “unrealised” paths do not contribute.

On the Power of Quantum Computation

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

On the Power of Quantum Computation

Myth 3

Quantum Computers give equally impressive computational speed-up to all problems

Reality

Quantum computers can give from exponential speed-up (factoring) to much smaller quadratic speed-up (search). The exact optimal quantum algorithm depends on the problem and is crucial for quantum cryptanalysis.

What it takes to be Quantum-Safe

Myth 4

No crypto protocol based on computational assumptions can be secure against quantum attacks. Therefore we can only use information theoretic security

What it takes to be Quantum-Safe

Myth 4

No crypto protocol based on computational assumptions can be secure against quantum attacks. Therefore we can only use information theoretic security

Reality

Quantum computers give speed-ups, but are real devices with well defined limitations. Can base crypto on quantum computational assumptions provided (i) there isn't an efficient quantum algorithm, as for some major cryptosystems (RSA, EC-DSA) and (ii) new security analysis is performed and security parameters are chosen

What it takes to be Quantum-Safe

Myth 5

Using problems that are hard for a quantum computer suffices to make a crypto protocol secure against any quantum attack

What it takes to be Quantum-Safe

Myth 5

Using problems that are hard for a quantum computer suffices to make a crypto protocol secure against any quantum attack

Reality

This is **necessary but not sufficient** condition. New quantum cryptanalysis, new security definitions and new proof techniques are also needed.

Quantum Cyber Security: Definition and Course Content

Definition

Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

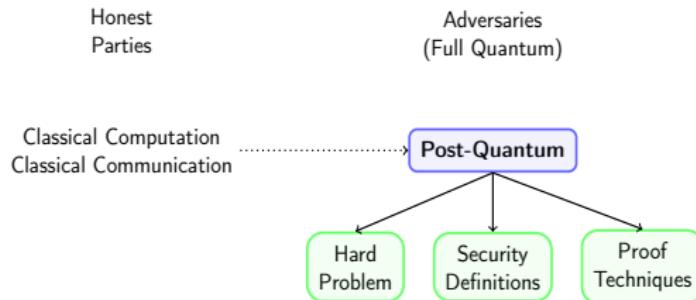
Definition

Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

- **Disruptive:** [Adversaries with Quantum Computers or QTech](#)
E.g. Quantum computers solve efficiently factoring and discrete log \Rightarrow RSA, DSA, ECDSA break

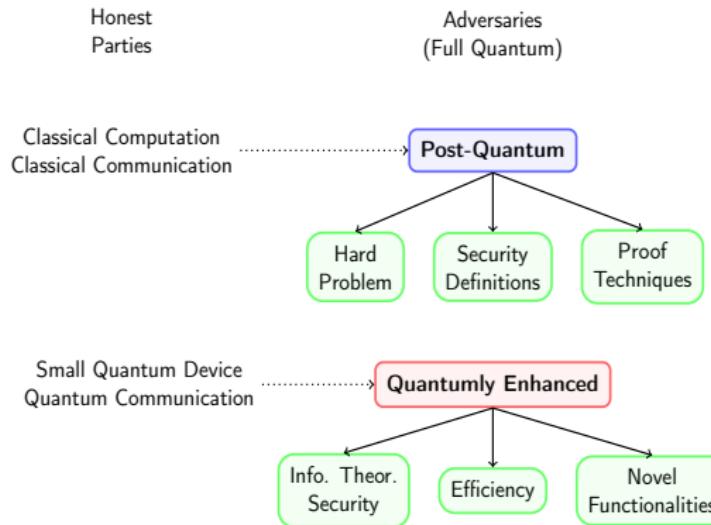
If a scalable quantum computer is built, most of current crypto breaks (from emails, bank transactions to national security secrets)!

Definition

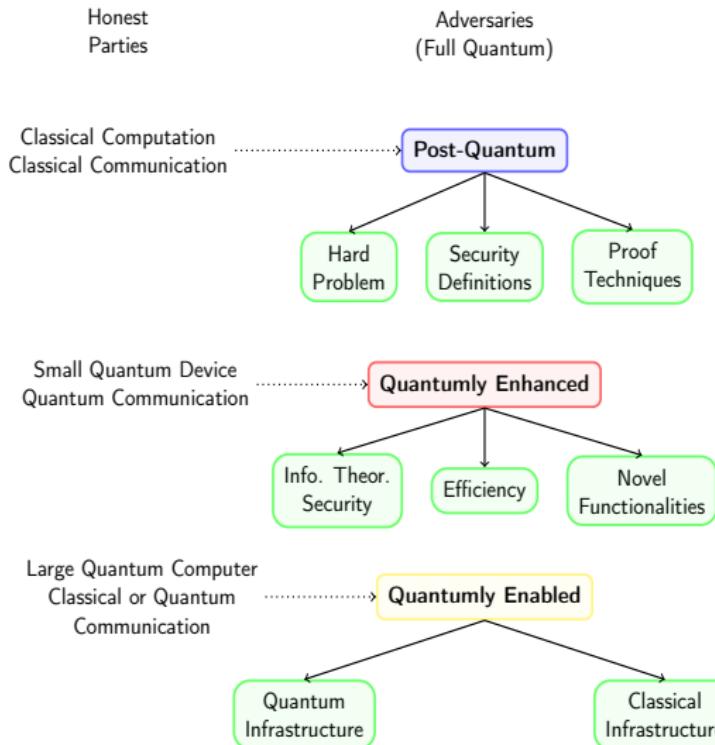

Quantum Cyber Security is the field that studies *every* impact of the development of quantum technologies on the security and privacy of communications and computations

- **Disruptive:** *Adversaries with Quantum Computers or QTech*
E.g. Quantum computers solve efficiently factoring and discrete log \Rightarrow RSA, DSA, ECDSA break

If a scalable quantum computer is built, most of current crypto breaks (from emails, bank transactions to national security secrets)!


- **New Opport:** *Honest with QTech better security/efficiency*
E.g. Quantum Key Distribution (QKD). Quantumness used to enable Key Distribution with information theoretic security

Quantum Cyber Security Landscape: Three Categories


See our review "Cyber Security in the Quantum Era" in [CACM](#)

Quantum Cyber Security Landscape: Three Categories

See our review “Cyber Security in the Quantum Era” in [CACM](#)

Quantum Cyber Security Landscape: Three Categories

See our review “Cyber Security in the Quantum Era” in [CACM](#)

- Introduction to Quantum Information & Computation (6 Lectures)

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). **First QKD lecture next week** (before completing background).

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). **First QKD lecture next week** (before completing background).
- Quantum Coin Flipping (1 Lecture)
- Quantum secure two-party functionalities (1 Lecture)
- Quantum Encryption & Quantum Authentication (1 Lecture)
- Other functionalities, protocols (1 Lectures)

- Introduction to Quantum Information & Computation (6 Lectures)
- Quantum Key Distribution (4 Lectures). **First QKD lecture next week** (before completing background).
- Quantum Coin Flipping (1 Lecture)
- Quantum secure two-party functionalities (1 Lecture)
- Quantum Encryption & Quantum Authentication (1 Lecture)
- Other functionalities, protocols (1 Lectures)
- Post-quantum cryptography (3 Lectures)
- Guest Lecture (tbc), Revision (2 Lectures)

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

- My favourite starting quote in a maths book:
“(the reader) should not be discouraged if (they) find (they) do not have the prerequisites for reading the prerequisites”

- First part is heavy in maths, but the purpose (cyber security) will become clearer in later parts
- Practically, once used in the notation, it becomes much more easy to follow and use
- Bear with us

- My favourite starting quote in a maths book:
“(the reader) should not be discouraged if (they) find (they) do not have the prerequisites for reading the prerequisites”
- But this is NOT the case in this course!

We hope you will enjoy it!