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Motivation: From Bit-strings to Qubit-strings

@ Units of quantum information are qubits

@ Registers consists of strings of qubits
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Qubit-strings |110) are (unit) vectors with complex
coefficients E.g. [¢)) = %(\101) +i|011))

Operations (Gates) and Observables are linear maps
(matrices): E.g. H|x) = % > yeoy (=1 1y)

To extract classical information we require measurements

Measurements are probabilistic: The coefficients determine
the probability. E.g. |/) =", 15130 ax [x), then x occurs
with probability |a,|?
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@ Multi-qubit operations can generate “entanglement’: system
behaves “holistically” (non-locally — see later)
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Motivation: From Bit-strings to Qubit-strings

Units of quantum information are qubits

Registers consists of strings of qubits

Qubit-strings |110) are (unit) vectors with complex
coefficients E.g. [¢)) = %(\101> +i|011))

Operations (Gates) and Observables are linear maps
(matrices): E.g. H|x) = % > yeoy (=1 1y)

To extract classical information we require measurements

Measurements are probabilistic: The coefficients determine
the probability. E.g. |/) =", 15130 ax [x), then x occurs
with probability |a,|?

Multi-qubit operations can generate “entanglement’: system
behaves “holistically” (non-locally — see later)

Q: Why we have speed-up?

A: Like classical probabilistic algorithms BUT with complex

“probabilities”
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Definitions with Examples

A Qubit is a 2-dimensional unit vector

@ For formal definitions look at: Math Supplement; Nielsen &
Chuang; or first lectures of IQC (https://opencourse.inf.
ed.ac.uk/iqc/course-materials/schedule or an older
version http://pwallden.gr/courseiqc.asp)
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https://opencourse.inf.ed.ac.uk/iqc/course-materials/schedule
http://pwallden.gr/courseiqc.asp

Definitions with Examples

A Qubit is a 2-dimensional unit vector

e We will denote a vector v as |v)
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Definitions with Examples

A Qubit is a 2-dimensional unit vector

@ The unit vectors in the x-axis as |0) and in the y-axis as |1)

1
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Definitions with Examples

A Qubit is a 2-dimensional unit vector

@ Another basis (45% rotated) is given by the vectors
{I+),1=)}, where |+) = Z5(10) + 11));|-) = J5(10) -

1

1)

[+)
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Definitions with Examples

A Qubit is a 2-dimensional unit vector
e General Qubit: |¢)) = al0) + b|1) where
||9) |> =1 =al?> + |b|? and a, b are complex numbers in
general

=)
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Definitions with Examples

A Qubit is a 2-dimensional unit vector
@ Can be expressed in the blue basis: [1)) = (a+2b)|+> pC

V2 V2

(a+b,
V2 “)

Vo (ath) (a=b)|_
[¥) S V2 [+) + 72 [=)
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Definitions with Examples

e Vector (notation) [¢) is called "ket".
Example: [¢)) = a|0) + b|1)

e Dual vector is denoted (1| and is called “bra”. Coefficients
are complex conjugate of the coefficients of the vectors
Example: (¢)| = a* (0| + b* (1]

e Inner product (c.f. dot-product) is taken between a vector
and a dual vector (c.f. “bra-ket").
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Definitions with Examples

e Vector (notation) [¢) is called "ket".
Example: [¢)) = a|0) + b|1)

e Dual vector is denoted (1| and is called “bra”. Coefficients
are complex conjugate of the coefficients of the vectors
Example: (¢)| = a* (0| + b* (1

e Inner product (c.f. dot-product) is taken between a vector
and a dual vector (c.f. “bra-ket").

@ Orthogonal vectors have zero inner product so:

(0]1) =(1|0) =0 and (0|0) = (1]1) =1

o Example: (12| 11) = asa1 + bybr = (1] n)*

Let |v1) = 5 (10) + 1)) : [¢2) = 5 (1]0) + v3[1))
Check: <1/)1| 1/)1> = <1/)2| /l/‘i’2> =1 and
(o] 1h1) = fo/—i L (Y1) = \2/3;%
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Definitions with Examples

In matrix notation:

Vectors: [11) = and Dual Vectors: (1| = (a5 b3)

al
by
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Definitions with Examples

In matrix notation:

Vectors: [11) = and Dual Vectors: (1| = (a5 b3)

ai
b1
e Operations (gates) and Observables correspond to linear
maps
(Complex valued) Matrix with matrix elements m;;
Moo Mo1 o s
V= <m10 m11> - Zi,je{o,l} mi; |i) (|
@ Outer Product between a vector and a dual vector (opposite
order of inner “ket-bra"):

/ ol aias aib;
W)1> <(/)2‘ ( b1b§>

*
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Definitions with Examples

1 140\ .
Example: A= (2 3+2i) =0) (0| + (1 + ) |0) (1] +

+211) (0] + (3 +2i) |1) (1]
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Definitions with Examples

1 140\ .
Example: A= (2 3+2i) =0) (0| + (1 + ) |0) (1] +

+211) (0] + (34 2i)|1) (1]
e Adjoint (Hermitian conjugate) of an operator is defined as:
transpose and conjugate element-wise

1 2 4
Example: A (1 i3 2/.) Note: |v)" = (v| and

(Alv))T = (v| AT and
(AB)T = BT AT
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Definitions with Examples

1 140\ .
Example: A= (2 3+2i) =0) (0| + (1 + ) |0) (1] +

+211) (0] + (34 2i)|1) (1]
e Adjoint (Hermitian conjugate) of an operator is defined as:
transpose and conjugate element-wise

1 2
CoAt
Example: A (1 i o3_0

(Alv)T = (v| AT and
(AB)T = BT AT

o An operator B is called Hermitian (or self-adjoint) if BT = B

) Note: |v)' = (v| and

@ Hermitian operators have real eigenvalues

Example: The matrix A above is NOT Hermitian, while the
matrix B is

B 1 2+3i\ t
B_(23i 5 >_B
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Definitions with Examples

@ An important class of Hermitian operators are the Projection
operators which are defined as: P? = P
These operators, restrict/project a vector to some subspace of
the total Hilbert space
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Definitions with Examples

@ An important class of Hermitian operators are the Projection
operators which are defined as: P? = P
These operators, restrict/project a vector to some subspace of
the total Hilbert space
10
E le: P = =
xample 10) (O] <O 0

defined by the vector |0)

> this projects to the subspace

@ An operator U is called unitary if UUT = <é 2)

Unitary operators preserve the inner product of vectors
(vl w) = (v| UtU |w)
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Definitions with Examples

e Operations/gates/channels for (pure) quantum states are
unitaries and they map quantum states to quantum states
Ul) = |$) noting that (¢| @) =1 = (4| UTU |[¢) = (| )

Examples: Identity |; Pauli X, Y and Z gates

(9 ()

Hadamard H

1 /1 1
H2<1 —1)
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Definitions with Examples

Example:
@ The quantum NOT-gate is the Pauli X:

0 1
o
Acts as the NOT-gate to computational basis vectors:

0)—|1) and |1)—0)
For a general qubit: o [0) + 3|1) —a|1) + 50)

a|0) 4+ 31) a|1) + 3]0)
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Definitions with Examples

e Measurement (projective) for pure states

e Computational basis: Given the state [¢)) = «|0) + [ |1) we
measure in the {|0),|1)} basis

With probability ||> we get the outcome 0; output state is |0)

With probability |3|> we get the outcome 1; output state is |1)

@ General basis: We express the state in that basis and repeat
Example: To measure in the {|+),|—)} basis we re-express
[Y) = a|0) 1) in that basis:

9) = C2 ) + )

- Outcome + with prob \

‘”b )12 and final state |+)

- Outcome — with prob \7\ and final state |—)
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Definitions with Examples

Check: What happens if one measures |+) in the {|0),|1)}
and in the {|+),|—)} bases?

Measurement formally: Given two projection Py, P> where
P1+ P> =1

Outcome cor. to Pl with probability (¢)| P; |¢)) and output
state (Py 1)) ————

Outcome cor. to P> with probability (¢/| P> |¢)) and output
1

state (P; |1)))

Note: the sum of probabilities is one:
(| PLIY) + (@ P2 [y) = (4| (PL[Y) + P2 |v)) =
= (W[ (P14 P2) ) = (|1 [4) =
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Definitions with Examples

@ We call trace of an operator A the following
Tr(A) = >, Aji and is defined for square matrices
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Definitions with Examples

@ We call trace of an operator A the following
Tr(A) = >, Aji and is defined for square matrices

Example: A = (311 312> and Tr(A) = a11 + ax
a  ax
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Definitions with Examples

@ We call trace of an operator A the following
Tr(A) = >, Aji and is defined for square matrices
Example: A = (311 312> and Tr(A) = a11 + ax

ax  ax

The trace is cyclic symmetric:
Tr(ABC) = Tr(BCA) = Tr(CAB)
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Definitions with Examples

@ We call trace of an operator A the following
Tr(A) = >, Aji and is defined for square matrices

Example: A = (311 312> and Tr(A) = a11 + ax
a  ax

The trace is cyclic symmetric:
Tr(ABC) = Tr(BCA) = Tr(CAB)
The trace of an operator is invariant under unitary similarity

transformations A — UAUT
Tr(UAUT) = Tr(UTUA) = Tr(A)
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Density Matrices and Mixed States

@ We represented g-states as vectors |1))
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Density Matrices and Mixed States

@ We represented g-states as vectors |1))

We can also represent the states as operators, which we call
density matrices: p,; = [) (]

Examples:
1 0
© 0 — 00 (; o)

Q |+):=1/v2(|0) + [1)) — |+) (+] =1/2 G D

@ Using this representation we can represent the state of
quantum systems that are not completely known.
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Density Matrices and Mixed States

@ We represented g-states as vectors |1))

We can also represent the states as operators, which we call
density matrices: p,; = [) (]

Examples:
© 0 — 00 (; o)
® [+):=1/v2(0) + 1) — 1 ¢+ =172 (] })

@ Using this representation we can represent the state of
quantum systems that are not completely known.

@ Definition: Assume that the (real) quantum state is one of a
number of states {|);)};, each of them occurring with
probability p;. We call {p;, |¢);)} an ensemble of states.
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Density Matrices and Mixed States

@ We represented g-states as vectors |1))
We can also represent the states as operators, which we call
density matrices: p,; = [) (]
Examples:
© 0 — 00 (; o)
0 0
® [+):=1/v2(0) + 1) — 1 ¢+ =172 (] })

@ Using this representation we can represent the state of
quantum systems that are not completely known.

@ Definition: Assume that the (real) quantum state is one of a
number of states {|);)};, each of them occurring with
probability p;. We call {p;, |¢);)} an ensemble of states.

The state of this system is described by the following density
matrix: p = > . p;i [¢i) (Vi
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Density Matrices and Mixed States

@ Definition: When a density matrix p cannot be expressed in
terms of a single pure state p # |1)) (¢)| V 1), we say that it is
a mixed state
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Density Matrices and Mixed States

@ Definition: When a density matrix p cannot be expressed in
terms of a single pure state p # |1)) (¢)| V 1), we say that it is
a mixed state

@ The mixed states include two types of randomness:

@ Classical randomness since we do not know which is the
(real) pure quantum state. This randomness is due to the lack
of knowledge that we (the observers) have. Is the same with
the randomness of classical physics (epistemic).
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Density Matrices and Mixed States

@ Definition: When a density matrix p cannot be expressed in
terms of a single pure state p # |1)) (¢)| V 1), we say that it is
a mixed state

@ The mixed states include two types of randomness:

@ Classical randomness since we do not know which is the
(real) pure quantum state. This randomness is due to the lack
of knowledge that we (the observers) have. Is the same with
the randomness of classical physics (epistemic).

@ Fundamental quantum randomness. This is due to the fact
that even if we know the exact pure quantum state (have
maximum information about the system), multiple outcomes
may occur.
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Example: Classical Vs Quantum Randomness

@ Mixed state:

=120 0121 a1= (P 5,)
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Example: Classical Vs Quantum Randomness

o Mixed state:
=120 0 +121011= (5,

@ Pure state (equal superposition):

p=lh 4= (175 1)
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Example: Classical Vs Quantum Randomness

o Mixed state:
=120 0 +121011= (5,

@ Pure state (equal superposition):
1/2 1/2
p=lh 4= (175 1)

@ Measured in computational basis {|0),|1)} both give same
probabilities (but for p; is classical randomness while for p> is
quantum randomness).

@ Measured in the Hadamard basis {|+) ., |—)} give very different
probabilities
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Example: Classical Vs Quantum Randomness

Mixed state:
=120 0 +121011= (5,

Pure state (equal superposition):
1/2 1/2

Measured in computational basis {|0),|1)} both give same
probabilities (but for p; is classical randomness while for p> is
quantum randomness).

Measured in the Hadamard basis {|+) ,|—)} give very different
probabilities

Difference between maximally mixed and equal superposition!
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Density Matrices

Definition: A density matrix is a matrix (or operator) p that:
@ is Hermitian pf = p

@ positive semi-definite (i.e. has non-negative eigenvalues)

© has unit trace Tr(p) =1
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Density Matrices

Definition: A density matrix is a matrix (or operator) p that:
@ is Hermitian pf = p

@ positive semi-definite (i.e. has non-negative eigenvalues)

© has unit trace Tr(p) =1

Exercise: Check that these conditions are satisfied
@ for pure density matrices

@ for density matrices of the form p =", p;

) (¥
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o Different ensembles can result to the same density matrix!
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o Different ensembles can result to the same density matrix!
o (3/4 0
Example: p = ( 0 1/4>
Ensemble 1: {p(0) =3/4.10),p(1) =1/4,|1)}

Ensemble 2: {p(a) =1/2.|a),p(b) = 1/2,|b)} where
) =1/310)+ /1)

by =/310) /3 1)
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o Different ensembles can result to the same density matrix!

o (3/4 0
Example: p = ( 0 1/4>

Ensemble 1: {p(0) =3/4.10),p(1) =1/4,|1)}

Ensemble 2: {p(a) =1/2.|a),p(b) = 1/2,|b)} where
) =1/310)+ /1)

by =/310) /3 1)

Check that: p = 3 [a) (a| + 3 |b) (b| = 210) (0] + 1 |1) (1
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Operations and Measurements for Mixed States

@ More information will be given in later lectures.

e Operations: p — UpU'; norm same Tr(UpUT) = Tr(p) = 1

Example: Evolve by X the state p = (3(/)4 134)

Xpxt = <t1> (1)) <3é4 134) <(1) (1)) ~ <1é4 334>
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Operations and Measurements for Mixed States

@ More information will be given in later lectures.

e Operations: p — UpU'; norm same Tr(UpUT) = Tr(p) = 1

Example: Evolve by X the state p = (3(/)4 134)

Xpxt = <t1> (1)) <3é4 134) <(1) (1)) ~ <1é4 334>

@ Measurements: Projective measurement P, P», at state p.

Probability of outcomes p; = Tr(Pip) ; p2 = Tr(Pap)

State after measurement

; p2 = PapP

1
= P1pP 5
P1 1P QTI‘(PQ/))

1
Tr(P1p)
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Observables and Expectation Values

e Observable O = Of is a Hermitian matrix
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Observables and Expectation Values

e Observable O = Of is a Hermitian matrix

e Expectation value of O given pure state [¢) is given by
“sandwich-ing” it:

(O)y = (Y| O 1)
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Observables and Expectation Values

e Observable O = Of is a Hermitian matrix

e Expectation value of O given pure state [¢) is given by
“sandwich-ing” it:
(O)y = (Y| O )

e Expectation value of O given mixed state p = >, p; [/);) (]
is given by (cf cyclic trace):

Ui

<O>p =Tr 0,0 Zpl UI| 0
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Observables and Expectation Values

Observable O = O is a Hermitian matrix

Expectation value of O given pure state 1) is given by
“sandwich-ing” it:

(O)y = (¢ Ol)

Expectation value of O given mixed state p = >, p; |;) (]
is given by (cf cyclic trace):

l//

<O>p =Tr 0,0 Zpl UI| 0

Possible values of measuring the observable are the
eigenvalues

Probability of each outcome is given by projecting on the
corresponding eigenspace
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