

Quantum Cyber Security

Lecture 3: Quantum Key Distribution I

Petros Wallden

University of Edinburgh

20th January 2026

Outline of Quantum Key Distribution Lectures

- [Lecture 3](#): Motivation and idea of QKD; The first protocol (BB84) and intuition of security
- [Lecture 8](#): Proper Security proof of BB84
- [Lecture 9](#): Other QKD protocols (and quantum money)
- [Lecture 10](#): Device-independent QKD and quantum non-locality

Outline of Quantum Key Distribution Lectures

- [Lecture 3](#): Motivation and idea of QKD; The first protocol (BB84) and intuition of security
- [Lecture 8](#): Proper Security proof of BB84
- [Lecture 9](#): Other QKD protocols (and quantum money)
- [Lecture 10](#): Device-independent QKD and quantum non-locality

Reference: Advances in Quantum Cryptography, Pirandola et al 2019, <https://arxiv.org/abs/1906.01645>

In modern communications there are many essential tasks requiring privacy and security properties guaranteed.

In modern communications there are many essential tasks requiring privacy and security properties guaranteed.

Examples of tasks:

- ① **Encryption:** Two parties communicate where no third party can learn anything about the content of the communication
- ② **Authentication:** Parties communicate knowing that messages received come from the legitimate party (public messages)
- ③ **Digital Signatures:** A message with the guarantee of authenticity, integrity and non-repudiation

- ① **Computational Security:** Security guaranteed when adversaries do not have the computational power/time to “break” it

- ① **Computational Security:** Security guaranteed when adversaries do not have the computational power/time to “break” it
 - Frequently relies on assuming that certain **problems** are **hard to solve** (need exponential time)
 - **Security may break** if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
 - Security could break **retrospectively** (revealing past secrets)

- ① **Computational Security:** Security guaranteed when adversaries do not have the computational power/time to “break” it
 - Frequently relies on assuming that certain **problems** are **hard to solve** (need exponential time)
 - **Security may break** if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
 - Security could break **retrospectively** (revealing past secrets)
- ② **Information Theoretic Security (ITS): Cannot be broken irrespective of the computational power of the adversary (“Perfect Security”)**

- ① **Computational Security:** Security guaranteed when adversaries do not have the computational power/time to “break” it
 - Frequently relies on assuming that certain **problems** are **hard to solve** (need exponential time)
 - **Security may break** if better (classical) algorithms are found, or new devices (quantum computers), or much faster (classical) computers, or given sufficient time.
 - Security could break **retrospectively** (revealing past secrets)
- ② **Information Theoretic Security (ITS): Cannot be broken irrespective of the computational power** of the adversary (“Perfect Security”)

Quantum Computers (when scalable) can break computationally secure cryptosystems (RSA, DSA, ECDSA)

- Message to be sent $x = x_1 x_2 \cdots x_n$ called **plaintext**
- Encrypted message $c = c_1 c_2 \cdots c_n$ called **ciphertext**
- Adversaries learn nothing about x from accessing c

- Message to be sent $x = x_1 x_2 \cdots x_n$ called **plaintext**
- Encrypted message $c = c_1 c_2 \cdots c_n$ called **ciphertext**
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
 - ① A secret key k of same size with the plaintext $|x| = |k| = n$
 - ② The secret key is known to sender and receiver and no other party has *any* information about it

- Message to be sent $x = x_1 x_2 \cdots x_n$ called **plaintext**
- Encrypted message $c = c_1 c_2 \cdots c_n$ called **ciphertext**
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
 - ① A secret key k of same size with the plaintext $|x| = |k| = n$
 - ② The secret key is known to sender and receiver and no other party has *any* information about it
 - ③ **Encryption:** Bitwise addition modulo 2 of the plaintext and the secret key: $c = c_1 c_2 \cdots c_n := (x_1 \oplus k_1)(x_2 \oplus k_2) \cdots (x_n \oplus k_n)$
 - ④ **Decryption:** Bitwise addition modulo 2 of the ciphertext and the secret key: $(c_1 \oplus k_1)(c_2 \oplus k_2) \cdots (c_n \oplus k_n) = (x_1 \oplus k_1 \oplus k_1)(x_2 \oplus k_2 \oplus k_2) \cdots (x_n \oplus k_n \oplus k_n) = x_1 x_2 \cdots x_n = x$

- Message to be sent $x = x_1 x_2 \cdots x_n$ called **plaintext**
- Encrypted message $c = c_1 c_2 \cdots c_n$ called **ciphertext**
- Adversaries learn nothing about x from accessing c
- The only (essentially) ITS encryption is the One-Time-Pad:
 - ① A secret key k of same size with the plaintext $|x| = |k| = n$
 - ② The secret key is known to sender and receiver and no other party has *any* information about it
 - ③ **Encryption:** Bitwise addition modulo 2 of the plaintext and the secret key: $c = c_1 c_2 \cdots c_n := (x_1 \oplus k_1)(x_2 \oplus k_2) \cdots (x_n \oplus k_n)$
 - ④ **Decryption:** Bitwise addition modulo 2 of the ciphertext and the secret key: $(c_1 \oplus k_1)(c_2 \oplus k_2) \cdots (c_n \oplus k_n) = (x_1 \oplus k_1 \oplus k_1)(x_2 \oplus k_2 \oplus k_2) \cdots (x_n \oplus k_n \oplus k_n) = x_1 x_2 \cdots x_n = x$

Example: $x = 1011$, $k = 0110$

Encryption: $c = (1 \oplus 0)(0 \oplus 1)(1 \oplus 1)(1 \oplus 0) = 1101$

Decryption: $(1 \oplus 0)(1 \oplus 1)(0 \oplus 1)(1 \oplus 0) = 1011 = x$

Inf Theor Sec **Encryption: Large Secret Key** (One-Time-Pad)

The Task: Key Distribution Background

Inf Theor Sec **Encryption**: Large Secret Key (One-Time-Pad)

Shannon's Thm: $|s| \geq |m|$ (key larger than message)

Inf Theor Sec **Encryption**: Large Secret Key (One-Time-Pad)

Shannon's Thm: $|s| \geq |m|$ (key larger than message)

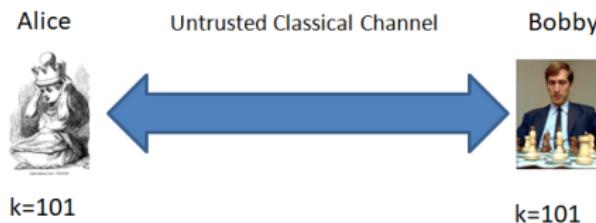
Inf Theor Sec **Authentication**: Short Secret Key
(Wegman-Carter)

The Task: Key Distribution Background

Inf Theor Sec **Encryption**: Large Secret Key (One-Time-Pad)

Shannon's Thm: $|s| \geq |m|$ (key larger than message)

Inf Theor Sec **Authentication**: Short Secret Key
(Wegman-Carter)



The Task: Key Distribution Background

Inf Theor Sec **Encryption**: Large Secret Key (One-Time-Pad)

Shannon's Thm: $|s| \geq |m|$ (key larger than message)

Inf Theor Sec **Authentication**: Short Secret Key
(Wegman-Carter)

The Task: Key Distribution Background

Alice

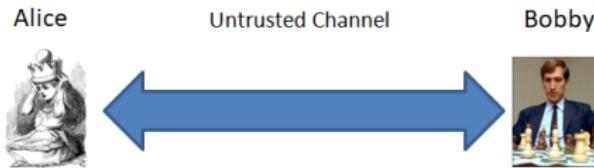
$s=110010010$

Bobby

$s=110010010$

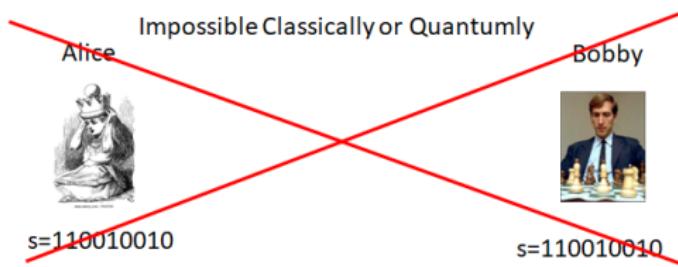
Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background



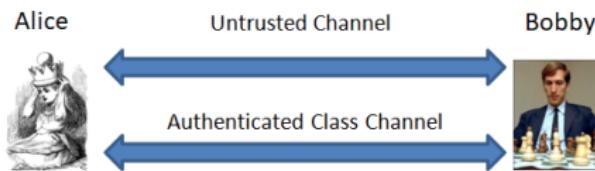
Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background



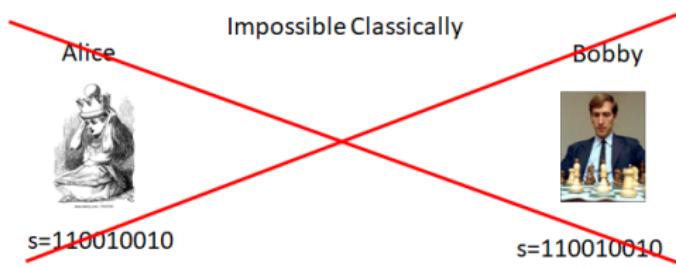
Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background



Two spatially separated parties want to share a Large Secret Key

The Task: Key Distribution Background

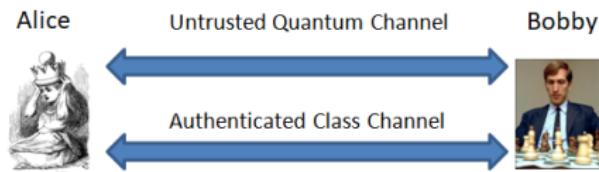


Two spatially separated parties want to share a Large Secret Key

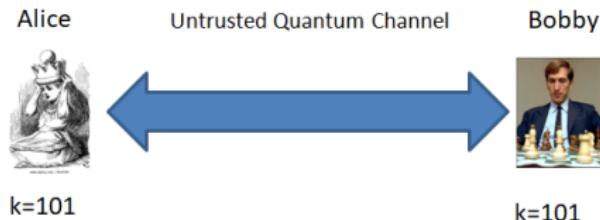
The Task: Key Distribution Background

Two spatially separated parties want to share a Large Secret Key

What Quantum Key Distribution Offers



What Quantum Key Distribution Offers



Replace Auth Class Channel with Short Key k

What Quantum Key Distribution Offers

QKD uses untrusted quantum communication and achieves:

Information Theoretic Secure **Secret Key Expansion**

What Quantum Key Distribution Offers

From **Short-Key** sufficient for Inf Theor Sec **Authentication**

Obtain **Long-Key** sufficient for Inf Theor Sec **Encryption**

Is Happening Now!

QKD is commercially available **currently**

Is Happening Now!

QKD is commercially available **currently**

Does **not** require a quantum computer

Is Happening Now!

QKD is commercially available **currently**

Does **not** require a quantum computer

Satellite QKD

The BB84 Protocol

Bennett and Brassard 1984 first QKD protocol
Followed “quantum money” of Wiesner

The BB84 Protocol

Bennett and Brassard 1984 first QKD protocol

Followed “quantum money” of Wiesner

Alice

- Sends a string of qubits each from the set $\{|h\rangle, |v\rangle, |+\rangle, |-\rangle\}$
- For each position (i) chooses randomly pair of bits $(a^{(i)}, x^{(i)})$
- $x^{(i)}$ selects the basis: $x^{(i)} = 0 \rightarrow \{|h\rangle, |v\rangle\}$; $x^{(i)} = 1 \rightarrow \{|+\rangle, |-\rangle\}$
- $a^{(i)}$ selects state: $a^{(i)} = 0 \rightarrow \{|h\rangle \text{ or } |+\rangle\}$; $a^{(i)} = 1 \rightarrow \{|v\rangle \text{ or } |-\rangle\}$
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \dots, (a^{(n)}, x^{(n)})$

The BB84 Protocol

Bennett and Brassard 1984 first QKD protocol

Followed “quantum money” of Wiesner

Alice

- Sends a string of qubits each from the set $\{|h\rangle, |v\rangle, |+\rangle, |-\rangle\}$
- For each position (i) chooses randomly pair of bits $(a^{(i)}, x^{(i)})$
- $x^{(i)}$ selects the basis: $x^{(i)} = 0 \rightarrow \{|h\rangle, |v\rangle\}$; $x^{(i)} = 1 \rightarrow \{|+\rangle, |-\rangle\}$
- $a^{(i)}$ selects state: $a^{(i)} = 0 \rightarrow \{|h\rangle \text{ or } |+\rangle\}$; $a^{(i)} = 1 \rightarrow \{|v\rangle \text{ or } |-\rangle\}$
- Stores string of pairs: $(a^{(1)}, x^{(1)}), (a^{(2)}, x^{(2)}), \dots, (a^{(n)}, x^{(n)})$

Bob

- For each qubit (i) chooses randomly basis $y^{(i)}$ and measures
- Obtains result $b^{(i)}$: $(b^{(1)}, y^{(1)}), (b^{(2)}, y^{(2)}), \dots, (b^{(n)}, y^{(n)})$

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with **any** bit-string Eve can produce are **impossible to achieve classically** (see next)

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with **any** bit-string Eve can produce are **impossible to achieve classically** (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY
They keep the positions where $x^{(i)} = y^{(i)}$ **raw key**

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with **any** bit-string Eve can produce are **impossible to achieve classically** (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY
They keep the positions where $x^{(i)} = y^{(i)}$ **raw key**
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key

Only part that quantum was required!

The correlations between $a^{(i)}$'s and $b^{(i)}$'s and the bound on correlations these bit-strings have with **any** bit-string Eve can produce are **impossible to achieve classically** (see next)

Subsequent Public Communication

- Alice/Bob announce the bases $x^{(i)}, y^{(i)}$ ONLY
They keep the positions where $x^{(i)} = y^{(i)}$ **raw key**
- If there is no eavesdropping $a^{(i)} = b^{(i)} \forall i$ of the raw key

• Parameter Estimation Phase

They choose fraction f of the raw key **randomly** and announce $a^{(i)}, b^{(i)}$ to estimate the correlation of their strings:

QBER – Quantum-Bit Error Rate

Also can bound the correlation third parties have

The BB84 Protocol

Example:

Obtaining the Raw Key

Key value a	0	0	1	1	0
Encoding x	0	1	1	0	1
BB84 state sent by Alice	$ h\rangle$	$ +\rangle$	$ -\rangle$	$ v\rangle$	$ +\rangle$
Measurement basis y by Bob	0	0	1	1	0
Measurement outcome b	0	1	1	1	1
Raw Key					

The BB84 Protocol

Example:

Obtaining the Raw Key

Key value a	0	0	1	1	0
Encoding x	0	1	1	0	1
BB84 state sent by Alice	$ h\rangle$	$ +\rangle$	$ -\rangle$	$ v\rangle$	$ +\rangle$
Measurement basis y by Bob	0	0	1	1	0
Measurement outcome b	0	1	1	1	1
Raw Key					

The BB84 Protocol

Example:

Obtaining the Raw Key

Key value a	0	0	1	1	0
Encoding x	0	1	1	0	1
BB84 state sent by Alice	$ h\rangle$	$ +\rangle$	$ -\rangle$	$ v\rangle$	$ +\rangle$
Measurement basis y by Bob	0	0	1	1	0
Measurement outcome b	0	1	1	1	1
Raw Key	0	✗	1	✗	✗

Intuition for Security:

- Measurements affect the quantum state – can **detect** amount of **eavesdropping** and **abort if high** (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Intuition for Security:

- Measurements affect the quantum state – can **detect** amount of **eavesdropping** and **abort if high** (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Cannot intercept, copy and resend! **Ideas for attacks?**

Intuition for Security:

- Measurements affect the quantum state – can **detect** amount of **eavesdropping** and **abort if high** (more than 11% QBER)
- Copying unknown qubits is impossible (No-Cloning Thm)

Cannot intercept, copy and resend! **Ideas for attacks?**

Question

What about intercept, measure and resend?

- We assume that Alice and Bob used same basis $x^{(i)} = y^{(i)}$ (otherwise (i) is not in the raw key)

- We assume that Alice and Bob used same basis $x^{(i)} = y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_1 = 1/2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$

- We assume that Alice and Bob used same basis $x^{(i)} = y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_1 = 1/2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$
- Bob measures in the $x^{(i)} \neq z^{(i)}$ basis
- With probability $p_2 = 1/2 = |\langle + | h \rangle|^2$ Bob obtains each of the two outcomes $b^{(i)}$, i.e. with $p_2 = 1/2$ Bob obtains the different outcome from what Alice sent

- We assume that Alice and Bob used same basis $x^{(i)} = y^{(i)}$ (otherwise (i) is not in the raw key)
- Eve measures in basis $z^{(i)}$
- With probability $p_1 = 1/2$ the basis $x^{(i)} \neq z^{(i)}$ (otherwise no eavesdropping is detected)
- After the measurement, Eve sends the output which is a state from the basis $z^{(i)}$
- Bob measures in the $x^{(i)} \neq z^{(i)}$ basis
- With probability $p_2 = 1/2 = |\langle + | h \rangle|^2$ Bob obtains each of the two outcomes $b^{(i)}$, i.e. with $p_2 = 1/2$ Bob obtains the different outcome from what Alice sent
- Alice and Bob detect 25% **QBER**, i.e. $p_1 \times p_2 = 1/4$

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Alice: bit-string A ; Bob: bit-string B

Eve: bit-string E the best guess she can make

Full security proof \Rightarrow all possible attacks of Eve

Alice: bit-string A ; Bob: bit-string B

Eve: bit-string E the best guess she can make

Can bound correlations of E with A, B given estimated correlation (QBER) of A, B from Parameter Estimation

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Alice: bit-string A ; Bob: bit-string B

Eve: bit-string E the best guess she can make

If **QBER** low then A, B more correlated than A, E or B, E .

$$H(A : B) > H(A : E)$$

Alice/Bob advantage in the final post-processing:

Final Classical Post-Processing

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Alice: bit-string A ; Bob: bit-string B

Eve: bit-string E the best guess she can make

If **QBER** low then A, B more correlated than A, E or B, E .

$$H(A : B) > H(A : E)$$

Alice/Bob advantage in the final post-processing:

Final Classical Post-Processing

Information Reconciliation (IR): Exchange information (error-correcting codes) to make $A' = B'$ (extra info leaked to Eve)

Full proof and final steps

Full security proof \Rightarrow all possible attacks of Eve

Alice: bit-string A ; Bob: bit-string B

Eve: bit-string E the best guess she can make

If **QBER** low then A, B more correlated than A, E or B, E .

$$H(A : B) > H(A : E)$$

Alice/Bob advantage in the final post-processing:

Final Classical Post-Processing

Information Reconciliation (IR): Exchange information (error-correcting codes) to make $A' = B'$ (extra info leaked to Eve)

Privacy Amplification (PA): Distil shorter key completely secret from Eve (use universal hash functions to amplify privacy)

- Realistic systems have **noise**: **QBER** $\neq 0$ even if honest
- Cannot tell **errors from noise** Vs **errors from eavesdropping**

- Realistic systems have **noise**: **QBER** $\neq 0$ even if honest
- Cannot tell **errors from noise** Vs **errors from eavesdropping**
- **QBER** is used for:
 - ① Estimate correlation of Alice's raw bit-string **A** with Bob's **B**
 - ② Bound the max correlation that any adversary's bit string **E** can have with **A** (using QM and **specific details of protocol**)

- Realistic systems have **noise**: **QBER** $\neq 0$ even if honest
- Cannot tell **errors from noise** Vs **errors from eavesdropping**
- **QBER** is used for:
 - ① Estimate correlation of Alice's raw bit-string A with Bob's B
 - ② Bound the max correlation that any adversary's bit string E can have with A (using QM and **specific details of protocol**)
- If (A, B) "correlation" is higher than (A, E) then it **is possible** for Alice and Bob to distil an (identical) bit-string A'' totally secret from Eve (using IR & PA)
- The key-rate R , highest possible noise-tolerance and maximum distance possible all depend on the advantage $H(A : B) - H(A : E)$

Insights to Remember

- QKD achieves ITS **secret key expansion**
- QKD uses classical authenticated channel
- BB84 requires sending/measuring **single qubits in two bases**
- Eavesdropping is detected in **Parameter Estimation Phase**
- If eavesdropping is high (QBER above threshold) we **abort**
- If eavesdropping is low, there is classical algorithm (IR, PA) to generate a **perfectly secret shared key**

Insights to Remember

- QKD achieves ITS **secret key expansion**
- QKD uses classical authenticated channel
- BB84 requires sending/measuring **single qubits in two bases**
- Eavesdropping is detected in **Parameter Estimation Phase**
- If eavesdropping is high (QBER above threshold) we **abort**
- If eavesdropping is low, there is classical algorithm (IR, PA) to generate a **perfectly secret shared key**

Satellite QKD is real!

https://www.youtube.com/watch?v=YYbp-v4W_yg