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Outline of Quantum Key Distribution Lectures

Lecture 3: Motivation and idea of QKD; The first protocol
(BB84) and intuition of security

Lecture 8: Proper Security proof of BB84

Lecture 9: Other QKD protocols (and quantum money)

Lecture 10: Device-independent QKD and quantum
non-locality

Reference: Advances in Quantum Cryptography, Pirandola et al
2019, https://arxiv.org/abs/1906.01645
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Cyber Security & Privacy: General

In modern communications there are many essential tasks
requiring privacy and security properties guaranteed.

Examples of tasks:
1 Encryption: Two parties communicate where no third party

can learn anything about the content of the communication

2 Authentication: Parties communicate knowing that messages
received come from the legitimate party (public messages)

3 Digital Signatures: A message with the guarantee of
authenticity, integrity and non-repudiation
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Types of Security & the “Quantum Threat”

1 Computational Security: Security guaranteed when adversaries
do not have the computational power/time to “break” it

Frequently relies on assuming that certain problems are hard
to solve (need exponential time)

Security may break if better (classical) algorithms are found,
or new devices (quantum computers), or much faster
(classical) computers, or given sufficient time.

Security could break retrospectively (revealing past secrets)

2 Information Theoretic Security (ITS): Cannot be broken
irrespective of the computational power of the adversary
(“Perfect Security”)

Quantum Computers (when scalable) can break
computationally secure cryptosystems (RSA, DSA, ECDSA)
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Information Theoretic Secure Encryption: One-Time-Pad

Message to be sent x = x1x2 · · · xn called plaintext

Encrypted message c = c1c2 · · · cn called ciphertext

Adversaries learn nothing about x from accessing c

The only (essentially) ITS encryption is the One-Time-Pad:
1 A secret key k of same size with the plaintext |x | = |k| = n
2 The secret key is known to sender and receiver and no other

party has any information about it
3 Encryption: Bitwise addition modulo 2 of the plaintext and the

secret key: c = c1c2 · · · cn := (x1 ⊕ k1)(x2 ⊕ k2) · · · (xn ⊕ kn)
4 Decryption: Bitwise addition modulo 2 of the ciphertext and

the secret key: (c1 ⊕ k1)(c2 ⊕ k2) · · · (cn ⊕ kn) =
= (x1⊕k1⊕k1)(x2⊕k2⊕k2) · · · (xn⊕kn⊕kn) = x1x2 · · · xn = x
Example: x = 1011, k = 0110
Encryption: c = (1⊕ 0)(0⊕ 1)(1⊕ 1)(1⊕ 0) = 1101
Decryption: (1⊕ 0)(1⊕ 1)(0⊕ 1)(1⊕ 0) = 1011 = x
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The Task: Key Distribution Background

Inf Theor Sec Encryption: Large Secret Key (One-Time-Pad)

Shannon’s Thm: |s| ≥ |m| (key larger than message)

Inf Theor Sec Authentication: Short Secret Key
(Wegman-Carter)
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The Task: Key Distribution Background

Two spatially separated parties want to share a Large Secret Key
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What Quantum Key Distribution Offers
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What Quantum Key Distribution Offers

Replace Auth Class Channel with Short Key k
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What Quantum Key Distribution Offers

QKD uses untrusted quantum communication and achieves:

Information Theoretic Secure Secret Key Expansion
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What Quantum Key Distribution Offers

From Short-Key sufficient for Inf Theor Sec Authentication

Obtain Long-Key sufficient for Inf Theor Sec Encryption
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Is Happening Now!

QKD is commercially
available currently

Does not require a
quantum computer

Satellite QKD
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The BB84 Protocol

Bennett and Brassard 1984 first QKD protocol
Followed “quantum money” of Wiesner

Alice

Sends a string of qubits each from the set {|h⟩, |v⟩, |+⟩, |−⟩}

For each position (i) chooses randomly pair of bits (a(i), x (i))

x (i) selects the basis: x (i) = 0 → {|h⟩ , |v⟩} ; x (i) = 1 → {|+⟩ , |−⟩}

a(i) selects state: a(i) = 0 → {|h⟩ or |+⟩} ; a(i) = 1 → {|v⟩ or |−⟩}

Stores string of pairs: (a(1), x (1)), (a(2), x (2)), · · · , (a(n), x (n))

Bob

For each qubit (i) chooses randomly basis y (i) and measures

Obtains result b(i): (b(1), y (1)), (b(2), y (2)), · · · , (b(n), y (n))
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The BB84 Protocol

Only part that quantum was required!

The correlations between a(i)’s and b(i)’s and the bound on
correlations these bit-strings have with any bit-string Eve can
produce are impossible to achieve classically (see next)

Subsequent Public Communication

Alice/Bob announce the bases x (i), y (i) ONLY
They keep the positions where x (i) = y (i) raw key

If there is no eavesdropping a(i) = b(i) ∀ i of the raw key

Parameter Estimation Phase
They choose fraction f of the raw key randomly and
announce a(i), b(i) to estimate the correlation of their strings:
QBER – Quantum-Bit Error Rate
Also can bound the correlation third parties have
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The BB84 Protocol

Example:

Obtaining the Raw Key

Key value a 0 0 1 1 0

Encoding x 0 1 1 0 1

BB84 state sent by Alice |h⟩ |+⟩ |−⟩ |v⟩ |+⟩

Measurement basis y by Bob 0 0 1 1 0

Measurement outcome b 0 1 1 1 1

Raw Key
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The BB84 Protocol

Example:

Obtaining the Raw Key

Key value a 0 0 1 1 0

Encoding x 0 1 1 0 1

BB84 state sent by Alice |h⟩ |+⟩ |−⟩ |v⟩ |+⟩

Measurement basis y by Bob 0 0 1 1 0

Measurement outcome b 0 1 1 1 1
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Security: Intuition and Attempted Attack

Intuition for Security:

Measurements affect the quantum state – can detect amount
of eavesdropping and abort if high (more than 11% QBER)

Copying unknown qubits is impossible (No-Cloning Thm)

Cannot intercept, copy and resend! Ideas for attacks?

Question

What about intercept, measure and resend?
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Forging attempts: Intercept, measure and resend

We assume that Alice and Bob used same basis x (i) = y (i)

(otherwise (i) is not in the raw key)

Eve measures in basis z(i)

With probability p1 = 1/2 the basis x (i) ̸= z(i) (otherwise no
eavesdropping is detected)

After the measurement, Eve sends the output which is a state
from the basis z(i)

Bob measures in the x (i) ̸= z(i) basis

With probability p2 = 1/2 = | ⟨+| h⟩|2 Bob obtains each of
the two outcomes b(i), i.e. with p2 = 1/2 Bob obtains the
different outcome from what Alice sent

Alice and Bob detect 25% QBER, i.e. p1 × p2 = 1/4
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Full proof and final steps

Full security proof ⇒ all possible attacks of Eve

Alice: bit-string A; Bob: bit-string B
Eve: bit-string E the best guess she can make

Final Classical Post-Processing

Information Reconciliation (IR): Exchange information
(error-correcting codes) to make A′ = B ′ (extra info leaked to Eve)

Privacy Amplification (PA): Distil shorter key completely secret
from Eve (use universal hash functions to amplify privacy)
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Realistic QKD and post-processing

Realistic systems have noise: QBER ̸= 0 even if honest

Cannot tell errors from noise Vs errors from eavesdropping

QBER is used for:

1 Estimate correlation of Alice’s raw bit-string A with Bob’s B

2 Bound the max correlation that any adversary’s bit string E
can have with A (using QM and specific details of protocol)

If (A,B) “correlation” is higher than (A,E ) then it is
possible for Alice and Bob to distil an (identical) bit-string
A′′ totally secret from Eve (using IR & PA)

The key-rate R, highest possible noise-tolerance and
maximum distance possible all depend on the advantage
H(A : B)− H(A : E )

Petros Wallden Lecture 3: Quantum Key Distribution I



Realistic QKD and post-processing

Realistic systems have noise: QBER ̸= 0 even if honest

Cannot tell errors from noise Vs errors from eavesdropping

QBER is used for:

1 Estimate correlation of Alice’s raw bit-string A with Bob’s B

2 Bound the max correlation that any adversary’s bit string E
can have with A (using QM and specific details of protocol)

If (A,B) “correlation” is higher than (A,E ) then it is
possible for Alice and Bob to distil an (identical) bit-string
A′′ totally secret from Eve (using IR & PA)

The key-rate R, highest possible noise-tolerance and
maximum distance possible all depend on the advantage
H(A : B)− H(A : E )

Petros Wallden Lecture 3: Quantum Key Distribution I



Realistic QKD and post-processing

Realistic systems have noise: QBER ̸= 0 even if honest

Cannot tell errors from noise Vs errors from eavesdropping

QBER is used for:

1 Estimate correlation of Alice’s raw bit-string A with Bob’s B

2 Bound the max correlation that any adversary’s bit string E
can have with A (using QM and specific details of protocol)

If (A,B) “correlation” is higher than (A,E ) then it is
possible for Alice and Bob to distil an (identical) bit-string
A′′ totally secret from Eve (using IR & PA)

The key-rate R, highest possible noise-tolerance and
maximum distance possible all depend on the advantage
H(A : B)− H(A : E )

Petros Wallden Lecture 3: Quantum Key Distribution I



Summary and Demo

Insights to Remember

QKD achieves ITS secret key expansion

QKD uses classical authenticated channel

BB84 requires sending/measuring single qubits in two bases

Eavesdropping is detected in Parameter Estimation Phase

If eavesdropping is high (QBER above threshold) we abort

If eavesdropping is low, there is classical algorithm (IR, PA) to
generate a perfectly secret shared key

Satellite QKD is real!

https://www.youtube.com/watch?v=YYbp-v4W_yg
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