

Quantum Cyber Security

Lecture 4: Quantum Information Basics II

Petros Wallden

University of Edinburgh

22nd January 2026

The following four lectures

- Understand mathematics of quantum states

Most general way to describe quantum systems

The following four lectures

- Understand mathematics of quantum states
Most general way to describe quantum systems
- Quantum measurements and their mathematics

The following four lectures

- Understand mathematics of quantum states
Most general way to describe quantum systems
- Quantum measurements and their mathematics
- Quantum operations and their mathematics

The following four lectures

- Understand mathematics of **quantum states**
Most general way to describe quantum systems
- **Quantum measurements** and their mathematics
- **Quantum operations** and their mathematics
- Properties and concepts of classical and quantum information theory

Describe

Observe

Evolve

As a carrier of
Information

- Single qubit in Hilbert space of dimension 2: $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

- Single qubit in Hilbert space of dimension 2: $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- Can have system of higher dimension, e.g. d -dimension is called **qudit**

qutrit $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$; 4-dim $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$, etc

- Single qubit in Hilbert space of dimension 2: $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- Can have system of higher dimension, e.g. d -dimension is called **qudit**

qutrit $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$; 4-dim $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$, etc

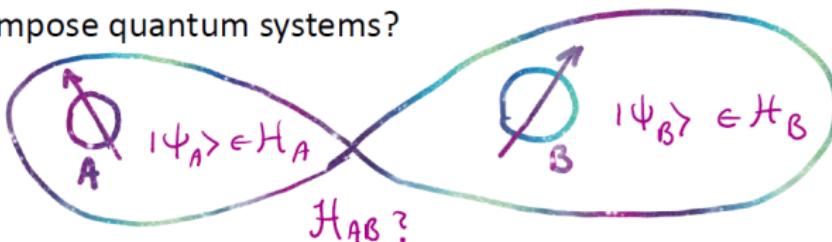
- Or multiple qubits: n -qubits have states of dimension $d = 2^n$ Hilbert space

- Single qubit in Hilbert space of dimension 2: $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- Can have system of higher dimension, e.g. d -dimension is called **qudit**

qutrit $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$; 4-dim $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$, etc

- Or multiple qubits: n -qubits have states of dimension $d = 2^n$ Hilbert space
- Let's see how to compose quantum systems (e.g. two qubits)

How to compose quantum systems?



- Two Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$ can form a new (composite) Hilbert space \mathcal{H}_{AB}
$$\dim \mathcal{H}_{AB} = \dim \mathcal{H}_A \times \dim \mathcal{H}_B$$
- Basis vectors of composite are the “product” of the basis vectors of the individual spaces
- **Tensor product** $\mathcal{H}_{AB} := \mathcal{H}_A \otimes \mathcal{H}_B$

Tensor Product of Vector Spaces

Let V and W be two vector spaces with $\dim m$ and n . The tensor product $V \otimes W$ of these vector spaces is a vector space of dimension $m \times n$ to which is associated a bilinear map that maps a pair $(v, w), v \in V, w \in W$ to an element of $V \otimes W$ denoted as $v \otimes w$.

- Let $|i\rangle$ and $|j\rangle$ be orthonormal bases for V and W respectively
Then $|i\rangle \otimes |j\rangle$ is orthonormal basis for $V \otimes W$
- General state $|\psi\rangle_{vw} = \sum_{i,j} \psi_{ij} |i\rangle_V \otimes |j\rangle_W$

Tensor Product of Vector Spaces

Let V and W be two vector spaces with $\dim m$ and n . The tensor product $V \otimes W$ of these vector spaces is a vector space of dimension $m \times n$ to which is associated a bilinear map that maps a pair $(v, w), v \in V, w \in W$ to an element of $V \otimes W$ denoted as $v \otimes w$.

- Let $|i\rangle$ and $|j\rangle$ be orthonormal bases for V and W respectively
Then $|i\rangle \otimes |j\rangle$ is orthonormal basis for $V \otimes W$
- General state $|\psi\rangle_{vw} = \sum_{i,j} \psi_{ij} |i\rangle_V \otimes |j\rangle_W$
- Matrix rep. of operator tensor products:

Let A_{ij} matrix elements of A and B_{kl} of B :

$$A \otimes B = \sum_{i,j,k,l} A_{ij} B_{kl} |i\rangle \langle j| \otimes |k\rangle \langle l|$$

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1n}B \\ A_{21}B & A_{22}B & \cdots & A_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mn}B \end{bmatrix}$$

- Dirac notation:

$$|0\rangle \otimes |+\rangle, |-\rangle \otimes |-\rangle \otimes |+\rangle, |01\rangle \otimes |-\rangle$$

- Dirac notation:

$$|0\rangle \otimes |+\rangle, |-\rangle \otimes |-\rangle \otimes |+\rangle, |01\rangle \otimes |-\rangle$$

- Matrix notation:

$$|0\rangle \otimes |0\rangle = |00\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 0 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$|0\rangle \otimes |0\rangle = |00\rangle ; |+\rangle \otimes |1\rangle$$

Examples

- Dirac notation:

$$|0\rangle \otimes |+\rangle, |-\rangle \otimes |-\rangle \otimes |+\rangle, |01\rangle \otimes |-\rangle$$

- Matrix notation:

$$|0\rangle \otimes |0\rangle = |00\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 0 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$|0\rangle \otimes |0\rangle = |00\rangle ; |+\rangle \otimes |1\rangle$$

- Operators:

$$\begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix} \otimes \begin{pmatrix} 2 & 1 \\ 3 & i \end{pmatrix}$$

- Properties:

- $c(|v\rangle \otimes |w\rangle) = (c|v\rangle) \otimes |w\rangle = |v\rangle \otimes (c|w\rangle)$ where c is a scalar.
- $(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$
- $|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$

- Properties:
 - $c(|v\rangle \otimes |w\rangle) = (c|v\rangle) \otimes |w\rangle = |v\rangle \otimes (c|w\rangle)$ where c is a scalar.
 - $(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$
 - $|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$
- Tensor product isn't commutative $|v\rangle \otimes |w\rangle \neq |w\rangle \otimes |v\rangle$
(not the order of the spaces is conventional, could reorder them if needed, but on all terms of one expression!)
- A vector tensored k -times with itself: $|\psi\rangle^{\otimes k}$

- Properties:
 - $c(|v\rangle \otimes |w\rangle) = (c|v\rangle) \otimes |w\rangle = |v\rangle \otimes (c|w\rangle)$ where c is a scalar.
 - $(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$
 - $|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$
- Tensor product isn't commutative $|v\rangle \otimes |w\rangle \neq |w\rangle \otimes |v\rangle$
(not the order of the spaces is conventional, could reorder them if needed, but on all terms of one expression!)
- A vector tensored k -times with itself: $|\psi\rangle^{\otimes k}$
- If A acts on V and B acts on W , then
$$(A \otimes B)(|v\rangle \otimes |w\rangle) = A|v\rangle \otimes B|w\rangle$$

- $O_1 |\psi_1\rangle = |\phi_1\rangle$ and $O_2 |\psi_2\rangle = |\phi_2\rangle$

$$(O_1 \otimes O_2)(|\psi_1\rangle \otimes |\psi_2\rangle) = O_1 |\psi_1\rangle \otimes O_2 |\psi_2\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$$

- $O_1 |\psi_1\rangle = |\phi_1\rangle$ and $O_2 |\psi_2\rangle = |\phi_2\rangle$

$$(O_1 \otimes O_2)(|\psi_1\rangle \otimes |\psi_2\rangle) = O_1 |\psi_1\rangle \otimes O_2 |\psi_2\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$$

- $X |j\rangle = |j \oplus 1\rangle$, $Z |j\rangle = (-1)^j |j\rangle$

$$(X \otimes Z) |01\rangle = X |0\rangle \otimes Z |1\rangle = |1\rangle \otimes (-1) |1\rangle = - |11\rangle$$

Examples: tensor product operators

- $O_1 |\psi_1\rangle = |\phi_1\rangle$ and $O_2 |\psi_2\rangle = |\phi_2\rangle$

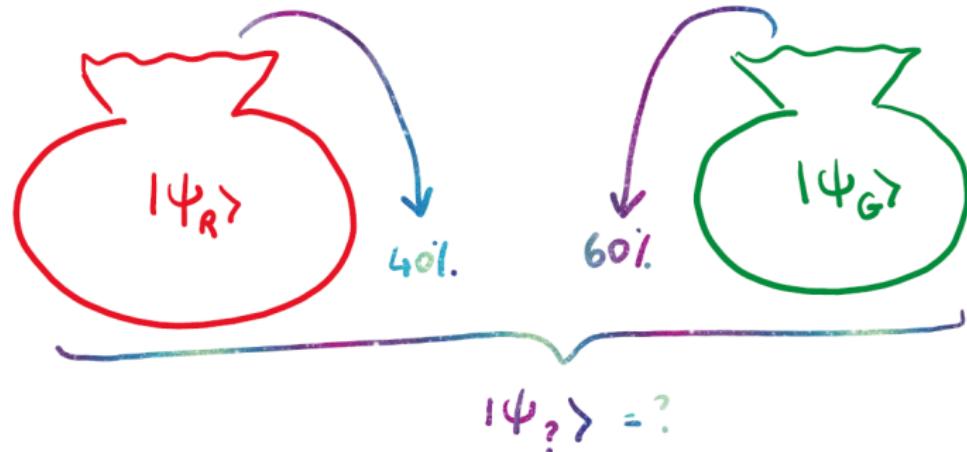
$$(O_1 \otimes O_2)(|\psi_1\rangle \otimes |\psi_2\rangle) = O_1 |\psi_1\rangle \otimes O_2 |\psi_2\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$$

- $X |j\rangle = |j \oplus 1\rangle$, $Z |j\rangle = (-1)^j |j\rangle$

$$(X \otimes Z) |01\rangle = X |0\rangle \otimes Z |1\rangle = |1\rangle \otimes (-1) |1\rangle = - |11\rangle$$

- $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$H \otimes X = \frac{1}{\sqrt{2}} \begin{pmatrix} X & X \\ X & -X \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$



- Examples:

$$\rho = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |+\rangle \langle +|$$

$$\rho = p_1 |\psi_R\rangle \langle \psi_R| + p_2 |\psi_G\rangle \langle \psi_G| \text{ where } p_1 = 0.4, p_2 = 0.6$$

Definition: A **density matrix** is a matrix (or operator) ρ that:

- ➊ is Hermitian $\rho^\dagger = \rho$
- ➋ positive semi-definite (i.e. has non-negative eigenvalues)
- ➌ has unit trace $\text{Tr}(\rho) = 1$
- ➍ Real eigenvalues, non-negative, normalised

Definition: A **density matrix** is a matrix (or operator) ρ that:

- ➊ is Hermitian $\rho^\dagger = \rho$
- ➋ positive semi-definite (i.e. has non-negative eigenvalues)
- ➌ has unit trace $\text{Tr}(\rho) = 1$
- ➍ Real eigenvalues, non-negative, normalised
- ➎ Pure state vector $|\psi\rangle$ goes to pure density matrix:
 $\rho_\psi := |\psi\rangle \langle \psi|$
- ➏ Can incorporate probabilities over quantum states (ensembles)

- $|01\rangle \langle 01|$ (in matrix)

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)
- $\frac{1}{2}|000\rangle\langle 000| + \frac{1}{2}|111\rangle\langle 111|$ (in matrix)

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)
- $\frac{1}{2}|000\rangle\langle 000| + \frac{1}{2}|111\rangle\langle 111|$ (in matrix)
- $\rho_A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; $\rho_B = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$

Express the composite $\rho_A \otimes \rho_B$

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)
- $\frac{1}{2}|000\rangle\langle 000| + \frac{1}{2}|111\rangle\langle 111|$ (in matrix)
- $\rho_A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; $\rho_B = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$

Express the composite $\rho_A \otimes \rho_B$

- Is $\rho = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ a density matrix?

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)
- $\frac{1}{2}|000\rangle\langle 000| + \frac{1}{2}|111\rangle\langle 111|$ (in matrix)
- $\rho_A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; $\rho_B = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$

Express the composite $\rho_A \otimes \rho_B$

- Is $\rho = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ a density matrix?
- Write the density matrix of the ensemble:
 $\{p_1 = 0.5, |00\rangle; p_2 = 0.25, |+1\rangle; p_3 = 0.25, |11\rangle\}$

$$\rho = \sum_{i=1}^3 p_i |\psi_i\rangle\langle\psi_i|$$

Examples

- $|01\rangle\langle 01|$ (in matrix)
- $|+_y\rangle\langle +_y|$, where $|+_y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ (in Dirac notation)
- $\frac{1}{2}|000\rangle\langle 000| + \frac{1}{2}|111\rangle\langle 111|$ (in matrix)
- $\rho_A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; $\rho_B = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$

Express the composite $\rho_A \otimes \rho_B$

- Is $\rho = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ a density matrix?
- Write the density matrix of the ensemble:
 $\{p_1 = 0.5, |00\rangle; p_2 = 0.25, |+1\rangle; p_3 = 0.25, |11\rangle\}$
 $\rho = \sum_{i=1}^3 p_i |\psi_i\rangle\langle\psi_i|$
- All mixed states can be expressed as ensembles (diagonalise!)

- There are states that CANNOT be written as tensor product of individual states

Product states: $|\psi_{AB}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$

- There are states that CANNOT be written as tensor product of individual states

Product states: $|\psi_{AB}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$

- Bell states: $|\Phi^+\rangle := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

This state **cannot** be written as product

- There are states that CANNOT be written as tensor product of individual states

Product states: $|\psi_{AB}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$

- Bell states: $|\Phi^+\rangle := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

This state **cannot** be written as product

- A (pure) state that cannot be written as product state, is **entangled**

- There are states that CANNOT be written as tensor product of individual states

Product states: $|\psi_{AB}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$

- Bell states: $|\Phi^+\rangle := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

This state **cannot** be written as product

- A (pure) state that cannot be written as product state, is **entangled**
- Mixed states that cannot be written as mixtures of product states are **entangled**

Mixture of product states: $\rho = \sum_{ij} p_{ij} \rho_i \otimes \rho_j$

- There are states that CANNOT be written as tensor product of individual states

Product states: $|\psi_{AB}\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$

- Bell states: $|\Phi^+\rangle := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

This state **cannot** be written as product

- A (pure) state that cannot be written as product state, is **entangled**
- Mixed states that cannot be written as mixtures of product states are **entangled**

Mixture of product states: $\rho = \sum_{ij} p_{ij} \rho_i \otimes \rho_j$

- To describe a subsystem of a (pure or mixed) entangled state, we need density matrices!

Bell states are entangled

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ Cannot be written as product state

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ Cannot be written as product state

Proof: Assume that there exists states $|a\rangle = a_0 |0\rangle + a_1 |1\rangle$ and $|b\rangle = b_0 |0\rangle + b_1 |1\rangle$ such that $|\Phi^+\rangle = |a\rangle \otimes |b\rangle$

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ Cannot be written as product state

Proof: Assume that there exists states $|a\rangle = a_0|0\rangle + a_1|1\rangle$ and $|b\rangle = b_0|0\rangle + b_1|1\rangle$ such that $|\Phi^+\rangle = |a\rangle \otimes |b\rangle$

It follows that

$$|a\rangle \otimes |b\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$$

Bell states are entangled

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ Cannot be written as product state

Proof: Assume that there exists states $|a\rangle = a_0|0\rangle + a_1|1\rangle$ and $|b\rangle = b_0|0\rangle + b_1|1\rangle$ such that $|\Phi^+\rangle = |a\rangle \otimes |b\rangle$

It follows that

$$|a\rangle \otimes |b\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$$

Since there are no $|01\rangle, |10\rangle$ terms, we know that

$$a_0 b_1 = a_1 b_0 = 0$$

Bell states are entangled

- $|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ Cannot be written as product state

Proof: Assume that there exists states $|a\rangle = a_0|0\rangle + a_1|1\rangle$ and $|b\rangle = b_0|0\rangle + b_1|1\rangle$ such that $|\Phi^+\rangle = |a\rangle \otimes |b\rangle$

It follows that

$$|a\rangle \otimes |b\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$$

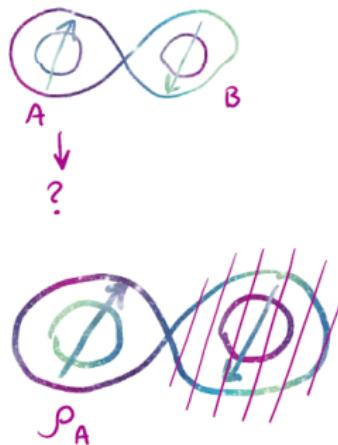
Since there are no $|01\rangle, |10\rangle$ terms, we know that

$$a_0 b_1 = a_1 b_0 = 0$$

(i) if $a_0 = 0$ then the term that has $|00\rangle$ vanishes (which it shouldn't)

(ii) if $b_1 = 0$ the term with $|11\rangle$ vanishes \square

Subsystems and partial trace



- Let $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$

Then $\rho_A := \text{Tr}_B(\rho_{AB})$ and $\rho_B := \text{Tr}_A(\rho_{AB})$

- It is easy to see that for product states $\rho_{AB} = \rho_A \otimes \rho_B$ this is the case

- Consider $M_{AB} = \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \otimes |k\rangle\langle l|_B$
- Partial trace over B:

$$M_A := \text{Tr}_B(M_{AB}) = \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times \text{Tr}(|k\rangle\langle l|_B)$$

(note the trace is number not a matrix)

$$= \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times (\langle l|k\rangle_B) \text{ (using cyclic property)}$$

$$= \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times (\delta_{k,l}) \text{ (using orthogonality)}$$

$$\sum_{i,j} \sum_k c_{ijkk} |i\rangle\langle j|_A$$

- Consider $M_{AB} = \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \otimes |k\rangle\langle l|_B$
- Partial trace over B:

$$M_A := \text{Tr}_B(M_{AB}) = \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times \text{Tr}(|k\rangle\langle l|_B)$$

(note the trace is number not a matrix)

$$= \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times (\langle l|k\rangle_B) \text{ (using cyclic property)}$$

$$= \sum_{i,j,k,l} c_{ijkl} |i\rangle\langle j|_A \times (\delta_{k,l}) \text{ (using orthogonality)}$$

$$\sum_{i,j} \sum_k c_{ijkk} |i\rangle\langle j|_A$$

- Reduced matrix (partial trace over B) is a matrix at space A
- Partial trace over A is defined similarly

- Reduced state for product states $\rho_{AB} = \rho_A \otimes \rho_B$
As expected: ρ_A and ρ_B

- Reduced state for product states $\rho_{AB} = \rho_A \otimes \rho_B$
As expected: ρ_A and ρ_B
- Reduced state for entangled (Bell) state:

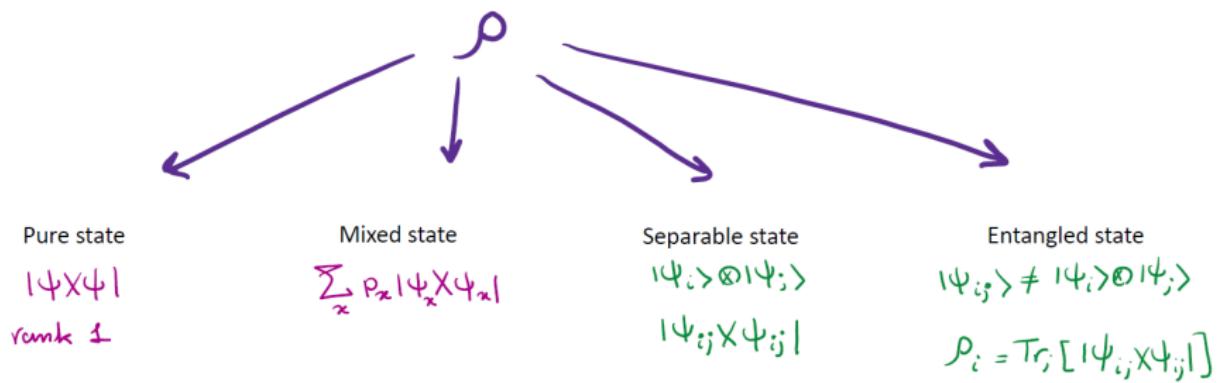
$$\rho_{AB} = |\Phi^+\rangle \langle \Phi^+|$$

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$\rho_A = \text{Tr}(\rho_{AB}) = \dots = \frac{1}{2}(|0\rangle \langle 0| + |1\rangle \langle 1|)_A$$

$$\rho_B = \text{Tr}(\rho_{AB}) = \dots = \frac{1}{2}(|0\rangle \langle 0| + |1\rangle \langle 1|)_B$$

One density operator to rule them all!



- We have seen simple one qubit measurements

- We have seen simple one qubit measurements
- It generalises for observable O

Born Rule:

The measured result for an observable O , on a quantum system $|\psi\rangle$ is given by its eigenvalues λ

The probability of getting a specific eigenvalue λ_i is equal to $p(i) = \langle\psi|P_i|\psi\rangle$

or more generally for a density matrix ρ is given by $p(i) = \text{Tr}[P_i\rho P_i^\dagger]$

Where P_i is the projection onto the eigenspace of O corresponding to λ_i

- We have seen simple one qubit measurements
- It generalises for observable O

Born Rule:

The measured result for an observable O , on a quantum system $|\psi\rangle$ is given by its eigenvalues λ

The probability of getting a specific eigenvalue λ_i is equal to $p(i) = \langle\psi|P_i|\psi\rangle$

or more generally for a density matrix ρ is given by $p(i) = \text{Tr}[P_i\rho P_i^\dagger]$

Where P_i is the projection onto the eigenspace of O corresponding to λ_i

- Can define more general measurements (non-projective)

See next lecture!

- Quantum Computation and Quantum Information by Nielsen & Chuang: 2.1.7, 2.4
- Introduction to Quantum Cryptography by Thomas Vidick and Stephanie Wehner: chapter 2
- Quantum Information Theory by Mark M. Wilde: chapter 3