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This Lecture

Generalised quantum measurements
POVM (mathematics)

Projective and general measurements with examples

Quantum operations
unitary operations

single qubit and entangling operations (with examples)
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Measurements

We have seen simple one qubit measurements

It generalises for observable O

Pi is projection to the eigenspace corresp. to eigenvalue λi

Due to trace’s cyclic property and P2 = P (projection):

p(i) = Tr (Piρ)

Can define more general measurements (non-projective)
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POVM (Positive Operator-Valued Measure)

It is the basis for general quantum measurements

Definition: POVM

A POVM is defined as a set of Hermitian (M†
j = Mj), positive

semi-definite Mj ≥ 0 matrices {Mj}j such that:∑
j

Mj = Id

The probability pj of obtaining the outcome j when performing
the measurement {Mj}j on state ρ is given by:

pj = Tr (Mjρ)

Generalises Born’s rule

Post-measurement state not determined by POVM (see next)
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Kraus Operators

Definition: Kraus Operators

Let {Mj}j be a POVM. A Kraus operator representation of M is a
set of matrices Kj such that:

∀ j , Mj = K †
j Kj

Their existence is guaranteed since Mj positive semi-definite

From POVMs we have:
∑

j K
†
j Kj = Id

The probability of obtaining outcome j :

pj = Tr
(
KjρK

†
j

)
= Tr

(
K †
j Kjρ

)
= Tr (Mjρ)

The post measurement state after outcome j :

ρj :=
KjρK

†
j

Tr
(
KjρK

†
j

)
If Tr

(
KjρK

†
j

)
= 0 outcome j never occurs
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Projective Measurements

All measurements we have seen are subclass of POVMs called
projective

Definition: Projective Measurements

A measurement {Mj}j where all measurement operators are
projections Mj = Pj = P2

j ∀ j is called projective

It follows that
∑

j Pj = I and that both Mj = Pj ; Kj = Pj ∀ j

Probability of outcome j on state ρ:

pj = Tr (Pjρ) or for pure states: pj = ⟨ψ|Pj |ψ⟩

State after obtaining outcome j :

ρj =
PjρPj

Tr (Pjρ)
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Examples (projective)

State ρ =
∑

x px |x⟩ ⟨x | (classical mixture)

- Measure in the computational basis, i.e. Mx := |x⟩ ⟨x |

- Check: it is a measurement; it gives the intuitive answer px

Two qubit (entangled) measurement

- State |Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

- Measure in basis: M1 = |Φ+⟩ ⟨Φ+| ; M2 = |Φ−⟩ ⟨Φ−|

M3 = |Ψ+⟩ ⟨Ψ+| ; M4 = |Ψ−⟩ ⟨Ψ−|

where |Φ±⟩ = 1√
2
(|00⟩ ± |11⟩) ; |Ψ±⟩ = 1√

2
(|01⟩ ± |10⟩)

- Check: it is a measurement; it gives the intuitive answer
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Example (measuring parity)

00, 11 even parity; 01, 10 odd parity

Define POVM (check condition; projects to even/odd
subspace)

Meven = |00⟩ ⟨00|+ |11⟩ ⟨11| ; Modd = |01⟩ ⟨01|+ |10⟩ ⟨10|

· · · after calculation gets:
peven = ⟨00| ρ |00⟩+ ⟨11| ρ |11⟩ ; podd = ⟨01| ρ |01⟩+ ⟨10| ρ |10⟩

Check on ρ = |Φ+⟩ ⟨Φ+|

(expected outcome prob 1 for even parity and state
unchanged!)
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Example (partial measurement)

2-qubit state |Φ+⟩AB , measure system B only in comp basis

M0 := IA ⊗ |0⟩ ⟨0|B ; M1 := IA ⊗ |1⟩ ⟨1|B
Check it is a measurement (POVM condition satisfied)

Compute p0, p1 (each with prob 0.5)

Compute the corresponding post-measurement states
(ρA0 = |0⟩ ⟨0| ; ρA1 = |1⟩ ⟨1|)

What is the state of A if we measure system B but “forget”
the outcome? (totally mixed state: property of maximally
entangled states)
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Non-projective POVM

We can measure a single qubit with more than two outcomes!

- Prob 0.5 measure in {|0⟩ , |1⟩} and prob 0.5 in {|+⟩ , |−⟩}

M0 = 1
2 |0⟩ ⟨0| ; M1 = 1

2 |1⟩ ⟨1| ;M2 = 1
2 |+⟩ ⟨+| ;M3 = 1

2 |−⟩ ⟨−|

Check it is measurement and probs on state ρ = |0⟩ ⟨0|

- Consider
M0 = α |−⟩ ⟨−| ; M1 = β |1⟩ ⟨1| ;M2 = I− α |−⟩ ⟨−| − β |1⟩ ⟨1|

Is it a measurement? (for α = β = 1/2: yes)

What are the probs on state ρ = |+⟩ ⟨+|?

This can be used to distinguish “with no errors”, between
non-orthogonal states |0⟩ , |+⟩, while allowing the “I don’t
know” answer!

Known as Unambiguous State Discriminations
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Unitary operations

Unitary operations: U†U = UU† = I

Also U = e iH for H a Hermitian matrix

In quantum computing, gates are unitaries (see below)

However, there are more general operations (see next lecture)
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Single Qubit Gates

For a single classical bit there is only one non-trivial gate:
NOT: takes 0 → 1 and 1 → 0, i.e. ¬a = a⊕ 1
For qubits all unitary operators are allowed gates
Even for single qubit, there exist infinite different gates

The quantum NOT-gate is the Pauli X :

X =

[
0 1
1 0

]
Acts as the NOT-gate to computational basis vectors:
|0⟩→|1⟩ and |1⟩→|0⟩
For a general qubit: α |0⟩+ β |1⟩→α |1⟩+ β |0⟩

α |0⟩+ β |1⟩ X α |1⟩+ β |0⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Pauli Y -gate:

Y =

[
0 −i
i 0

]
On computational basis vectors: |0⟩→i |1⟩ and |1⟩→−i |0⟩.
Acting on a general state: α |0⟩+ β |1⟩→iα |1⟩ − iβ |0⟩

α |0⟩+ β |1⟩ Y iα |1⟩ − iβ |0⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Pauli Z -gate:

Z =

[
1 0
0 −1

]
On computational basis vectors: |0⟩→|0⟩ and |1⟩→− |1⟩.
Acting on a general state: α |0⟩+ β |1⟩→α |0⟩ − β |1⟩

α |0⟩+ β |1⟩ Z α |0⟩ − β |1⟩

E.g. Z |+⟩ = |−⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Hadamard H-gate:

H =
1√
2

[
1 1
1 −1

]
On computational basis vectors: |0⟩→ 1√

2
(|0⟩+ |1⟩) and

|1⟩→ 1√
2
(|0⟩ − |1⟩).

Acting on a general state:

α |0⟩+ β |1⟩→ 1√
2
((α+ β) |0⟩+ (α− β) |1⟩)

α |0⟩+ β |1⟩ H
1√
2
((α+ β) |0⟩+ (α− β) |1⟩)

E.g. H|0⟩ = |+⟩
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Single Qubit Gates

We give some gates. Using a suitable finite collection of gates
we can approximate all (see later).
Phase gate Rθ-gate:

Rθ =

[
1 0
0 e iθ

]
On computational basis vectors: |0⟩→|0⟩ and |1⟩→e iθ |1⟩.
Acting on a general state:

α |0⟩+ β |1⟩→α |0⟩+ e iθ |1⟩

α |0⟩+ β |1⟩ Rθ α |0⟩+ e iθβ |1⟩
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Single Qubit Gates

Some examples of phase gates Rθ:
1 Rπ = Z

2 Rπ/2 =

[
1 0
0 i

]
Some authors call this gate as the phase gate

3 Rπ/4 =

[
1 0
0 1+i√

2

]
This gate is also called the π/8-gate

Note: This is not a typo! Historically is called this way even
though it corresponds to θ = π/4 due to different conventions!
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Two Qubits Gates

Notation: “Control” gates are denoted as CU = ∧U

The most important two-qubit gate is CNOT
(Controlled-NOT)

∧X = CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Two Qubits Gates
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Example: entangling gate

Consider ∧X (|+⟩ ⊗ |0⟩)

It gives: 1√
2
(|00⟩+ |11⟩) = |Φ+⟩

From no entanglement, ∧X gives maximal entanglement

The circuit for preparing the Bell state:

|0⟩ H •

|0⟩
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Two Qubits Gates

Given U =

[
U00 U01
U10 U11

]
the controlled U gate:

∧U = CU =


1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11



A general state:
a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩→a |00⟩+ b |01⟩+
+ |1⟩U (c |0⟩+ d |1⟩)

|A⟩ • |A⟩

|B⟩ U UA |B⟩
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Two Qubits Gates

E.g. the controlled Z gate:

∧Z = CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


A general state:
a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩→a |00⟩+ b |01⟩+ c |10⟩ − d |11⟩

|A⟩ • |A⟩

|B⟩ Z ZA |B⟩
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A Three Qubits Gate

The Toffoli gate: Has two control qubits that are left
unaffected, and a target qubit.
Notation: ∧ ∧ X .
Action: It acts as identity except when both controlled qubits
are |1⟩ where we apply X to the target qubit:

|A⟩ |B⟩ |C ⟩→|A⟩ |B⟩XAB |C ⟩ = |A⟩ |B⟩ |C ⊕ AB⟩

|A⟩ • |A⟩
|B⟩ • |B⟩

|C ⟩ X |C ⊕ AB⟩
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