

Quantum Cyber Security

Lecture 5: Quantum Information Basics III

Petros Wallden

University of Edinburgh

27th January 2026

- Generalised quantum measurements
 - POVM (mathematics)
 - Projective and general measurements with examples

- Generalised quantum measurements
 - POVM (mathematics)
 - Projective and general measurements with examples
- Quantum operations
 - unitary operations
 - single qubit and entangling operations (with examples)

- We have seen simple one qubit measurements
- It generalises for observable O

Born Rule:

The measured result for an observable O , on a quantum system $|\psi\rangle$ is given by its eigenvalues λ
The probability of getting a specific eigenvalue λ_i is equal to $p(i) = \langle\psi|P_i|\psi\rangle$
or more generally for a density matrix ρ is given by $p(i) = \text{Tr}[P_i\rho P_i^\dagger]$
Where P_i is the projection onto the eigenspace of O corresponding to λ_i

- P_i is projection to the eigenspace corresp. to eigenvalue λ_i
- Due to trace's cyclic property and $P^2 = P$ (projection):

$$p(i) = \text{Tr}(P_i\rho)$$

- Can define more general measurements (non-projective)

It is the basis for general quantum measurements

Definition: POVM

A POVM is defined as a set of Hermitian ($M_j^\dagger = M_j$), positive semi-definite $M_j \geq 0$ matrices $\{M_j\}_j$ such that:

$$\sum_j M_j = \mathbb{I}_d$$

- The probability p_j of obtaining the outcome j when performing the measurement $\{M_j\}_j$ on state ρ is given by:

$$p_j = \text{Tr}(M_j \rho)$$

- Generalises Born's rule
- Post-measurement state not determined by POVM (see next)

Definition: Kraus Operators

Let $\{M_j\}_j$ be a POVM. A Kraus operator representation of M is a set of matrices K_j such that:

$$\forall j, M_j = K_j^\dagger K_j$$

- Their existence is guaranteed since M_j positive semi-definite
- From POVMs we have: $\sum_j K_j^\dagger K_j = \mathbb{I}_d$
- The probability of obtaining outcome j :

$$p_j = \text{Tr} (K_j \rho K_j^\dagger) = \text{Tr} (K_j^\dagger K_j \rho) = \text{Tr} (M_j \rho)$$

- The post measurement state after outcome j :

$$\rho_j := \frac{K_j \rho K_j^\dagger}{\text{Tr} (K_j \rho K_j^\dagger)}$$

- If $\text{Tr} (K_j \rho K_j^\dagger) = 0$ outcome j never occurs

- All measurements we have seen are subclass of POVMs called **projective**

Definition: Projective Measurements

A measurement $\{M_j\}_j$ where all measurement operators are projections $M_j = P_j = P_j^2 \quad \forall j$ is called **projective**

- It follows that $\sum_j P_j = \mathbb{I}$ and that both $M_j = P_j ; K_j = P_j \quad \forall j$
- Probability of outcome j on state ρ :

$$p_j = \text{Tr}(P_j \rho) \quad \text{or for pure states: } p_j = \langle \psi | P_j | \psi \rangle$$

- State after obtaining outcome j :

$$\rho_j = \frac{P_j \rho P_j}{\text{Tr}(P_j \rho)}$$

- State $\rho = \sum_x p_x |x\rangle \langle x|$ (classical mixture)
 - Measure in the computational basis, i.e. $M_x := |x\rangle \langle x|$
 - Check: it is a measurement; it gives the intuitive answer p_x

- State $\rho = \sum_x p_x |x\rangle \langle x|$ (classical mixture)
 - Measure in the computational basis, i.e. $M_x := |x\rangle \langle x|$
 - Check: it is a measurement; it gives the intuitive answer p_x
- Two qubit (entangled) measurement
 - State $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
 - Measure in basis: $M_1 = |\Phi^+\rangle \langle \Phi^+| ; M_2 = |\Phi^-\rangle \langle \Phi^-|$
 $M_3 = |\Psi^+\rangle \langle \Psi^+| ; M_4 = |\Psi^-\rangle \langle \Psi^-|$
where $|\Phi^\pm\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$; $|\Psi^\pm\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$
 - Check: it is a measurement; it gives the intuitive answer

- $|00\rangle\langle 00|, |11\rangle\langle 11|$ even parity; $|01\rangle\langle 01|, |10\rangle\langle 10|$ odd parity
- Define POVM (check condition; projects to even/odd subspace)

$$M_{\text{even}} = |00\rangle\langle 00| + |11\rangle\langle 11| ; M_{\text{odd}} = |01\rangle\langle 01| + |10\rangle\langle 10|$$

- ... after calculation gets:

$$p_{\text{even}} = \langle 00| \rho |00\rangle + \langle 11| \rho |11\rangle ; p_{\text{odd}} = \langle 01| \rho |01\rangle + \langle 10| \rho |10\rangle$$

- Check on $\rho = |\Phi^+\rangle\langle\Phi^+|$

(expected outcome prob 1 for even parity and state unchanged!)

- 2-qubit state $|\Phi^+\rangle_{AB}$, measure system B only in comp basis
- $M_0 := \mathbb{I}_A \otimes |0\rangle\langle 0|_B$; $M_1 := \mathbb{I}_A \otimes |1\rangle\langle 1|_B$
- Check it is a measurement (POVM condition satisfied)
- Compute p_0, p_1 (each with prob 0.5)
- Compute the corresponding post-measurement states ($\rho_0^A = |0\rangle\langle 0|$; $\rho_1^A = |1\rangle\langle 1|$)
- What is the state of A if we measure system B but “forget” the outcome? (totally mixed state: property of maximally entangled states)

- We can measure a single qubit with more than two outcomes!
 - Prob 0.5 measure in $\{|0\rangle, |1\rangle\}$ and prob 0.5 in $\{|+\rangle, |-\rangle\}$

$$M_0 = \frac{1}{2} |0\rangle\langle 0| ; M_1 = \frac{1}{2} |1\rangle\langle 1| ; M_2 = \frac{1}{2} |+\rangle\langle +| ; M_3 = \frac{1}{2} |-\rangle\langle -|$$

Check it is measurement and probs on state $\rho = |0\rangle\langle 0|$

- We can measure a single qubit with more than two outcomes!
 - Prob 0.5 measure in $\{|0\rangle, |1\rangle\}$ and prob 0.5 in $\{|+\rangle, |-\rangle\}$

$$M_0 = \frac{1}{2} |0\rangle\langle 0| ; M_1 = \frac{1}{2} |1\rangle\langle 1| ; M_2 = \frac{1}{2} |+\rangle\langle +| ; M_3 = \frac{1}{2} |-\rangle\langle -|$$

Check it is measurement and probs on state $\rho = |0\rangle\langle 0|$

- Consider

$$M_0 = \alpha |-\rangle\langle -| ; M_1 = \beta |1\rangle\langle 1| ; M_2 = \mathbb{I} - \alpha |-\rangle\langle -| - \beta |1\rangle\langle 1|$$

Is it a measurement? (for $\alpha = \beta = 1/2$: yes)

What are the probs on state $\rho = |+\rangle\langle +|$?

- We can measure a single qubit with more than two outcomes!
 - Prob 0.5 measure in $\{|0\rangle, |1\rangle\}$ and prob 0.5 in $\{|+\rangle, |-\rangle\}$

$$M_0 = \frac{1}{2} |0\rangle\langle 0| ; M_1 = \frac{1}{2} |1\rangle\langle 1| ; M_2 = \frac{1}{2} |+\rangle\langle +| ; M_3 = \frac{1}{2} |-\rangle\langle -|$$

Check it is measurement and probs on state $\rho = |0\rangle\langle 0|$

- Consider

$$M_0 = \alpha |-\rangle\langle -| ; M_1 = \beta |1\rangle\langle 1| ; M_2 = \mathbb{I} - \alpha |-\rangle\langle -| - \beta |1\rangle\langle 1|$$

Is it a measurement? (for $\alpha = \beta = 1/2$: yes)

What are the probs on state $\rho = |+\rangle\langle +|$?

- This can be used to distinguish “with no errors”, between non-orthogonal states $|0\rangle, |+\rangle$, while allowing the “I don’t know” answer!

Known as **Unambiguous State Discriminations**

- Unitary operations: $U^\dagger U = UU^\dagger = \mathbb{I}$
- Also $U = e^{iH}$ for H a Hermitian matrix
- In quantum computing, gates are unitaries (see below)
- However, there are more general operations (see next lecture)

- For a single **classical** bit there is only one non-trivial gate:
NOT: takes $0 \rightarrow 1$ and $1 \rightarrow 0$, i.e. $\neg a = a \oplus 1$
- For **qubits** all unitary operators are allowed gates
Even for **single qubit**, there exist **infinite** different gates

- For a single **classical** bit there is only one non-trivial gate:
NOT: takes $0 \rightarrow 1$ and $1 \rightarrow 0$, i.e. $\neg a = a \oplus 1$
- For **qubits** all unitary operators are allowed gates
Even for **single qubit**, there exist **infinite** different gates
- The quantum **NOT**-gate is the Pauli **X**:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Acts as the **NOT**-gate to computational basis vectors:

$|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$

For a general qubit: $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$

$$\alpha |0\rangle + \beta |1\rangle \xrightarrow{\quad \boxed{X} \quad} \alpha |1\rangle + \beta |0\rangle$$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Pauli Y -gate:

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow i|1\rangle$ and $|1\rangle \rightarrow -i|0\rangle$.

Acting on a general state: $\alpha|0\rangle + \beta|1\rangle \rightarrow i\alpha|1\rangle - i\beta|0\rangle$

$$\alpha|0\rangle + \beta|1\rangle \xrightarrow{\boxed{Y}} i\alpha|1\rangle - i\beta|0\rangle$$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Pauli Z -gate:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow -|1\rangle$.

Acting on a general state: $\alpha|0\rangle + \beta|1\rangle \rightarrow \alpha|0\rangle - \beta|1\rangle$

$$\alpha|0\rangle + \beta|1\rangle \xrightarrow{\boxed{Z}} \alpha|0\rangle - \beta|1\rangle$$

E.g. $Z|+\rangle = |-\rangle$

Single Qubit Gates

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Hadamard H -gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Acting on a general state:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \frac{1}{\sqrt{2}} ((\alpha + \beta) |0\rangle + (\alpha - \beta) |1\rangle)$$

$$\alpha |0\rangle + \beta |1\rangle \xrightarrow{\quad \boxed{H} \quad}$$

$$\frac{1}{\sqrt{2}} ((\alpha + \beta) |0\rangle + (\alpha - \beta) |1\rangle)$$

E.g. $H|0\rangle = |+\rangle$

- We give some gates. Using a suitable finite collection of gates we can approximate all (see later).
- Phase gate R_θ -gate:

$$R_\theta = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$

On computational basis vectors: $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow e^{i\theta} |1\rangle$.

Acting on a general state:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle + e^{i\theta} \beta |1\rangle$$

$$\alpha |0\rangle + \beta |1\rangle \xrightarrow{\boxed{R_\theta}} \alpha |0\rangle + e^{i\theta} \beta |1\rangle$$

Some examples of phase gates R_θ :

① $R_\pi = Z$

② $R_{\pi/2} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ Some authors call this gate as **the** phase gate

③ $R_{\pi/4} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{bmatrix}$ This gate is also called the $\pi/8$ -gate

Note: This is not a typo! Historically is called this way even though it corresponds to $\theta = \pi/4$ due to different conventions!

Notation: “Control” gates are denoted as $CU = \wedge U$

Notation: “Control” gates are denoted as $CU = \wedge U$

The **first qubit** acts as a control for the **second qubit** (target).

I.e. depending on the value of the **first qubit** we either do nothing \mathbb{I} to the **second qubit**, or we apply the (single qubit) gate U to the **second qubit**

Notation: “Control” gates are denoted as $\text{CU} = \wedge U$

The **first qubit** acts as a control for the **second qubit** (target).

I.e. depending on the value of the **first qubit** we either do nothing \mathbb{I} to the **second qubit**, or we apply the (single qubit) gate U to the **second qubit**

Solid dot, signifies control qubit

- The most important two-qubit gate is **CNOT** (Controlled-NOT)

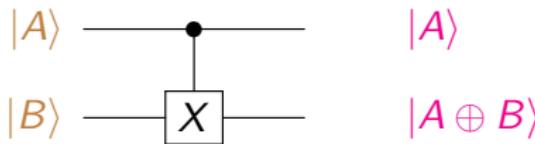
$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- The most important two-qubit gate is **CNOT** (Controlled-NOT)

$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- A general state:

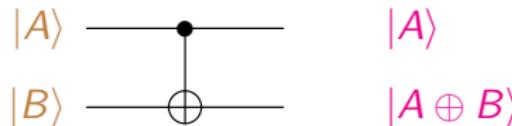
$$a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \xrightarrow{\text{CNOT}} a|00\rangle + b|01\rangle + c|11\rangle + d|10\rangle$$



- The most important two-qubit gate is **CNOT** (Controlled-NOT)

$$\wedge X = \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- A general state (alternative diagrammatic notation):
 $a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \rightarrow a|00\rangle + b|01\rangle + c|11\rangle + d|10\rangle$

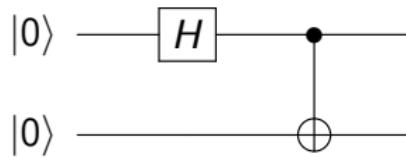


Example: entangling gate

- Consider $\wedge X(|+\rangle \otimes |0\rangle)$
- It gives: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi^+\rangle$

Example: entangling gate

- Consider $\wedge X(|+\rangle \otimes |0\rangle)$
- It gives: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi^+\rangle$
- From no entanglement, $\wedge X$ gives maximal entanglement
- The circuit for preparing the Bell state:



- Given $U = \begin{bmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{bmatrix}$ the controlled U gate:

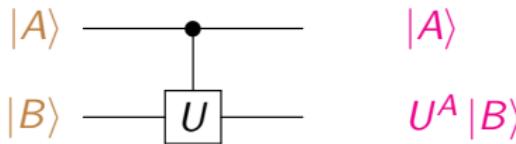
$$\wedge U = CU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{bmatrix}$$

- Given $U = \begin{bmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{bmatrix}$ the controlled U gate:

$$\wedge U = CU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{bmatrix}$$

- A general state:

$$a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \xrightarrow{\text{a}} a|00\rangle + b|01\rangle + \\ + |1\rangle U(c|0\rangle + d|1\rangle)$$

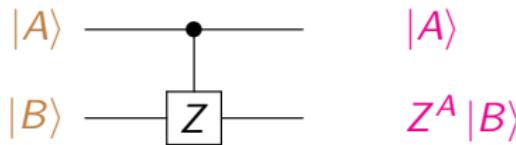


- E.g. the controlled Z gate:

$$\wedge Z = CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- A general state:

$$a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle \xrightarrow{\text{CZ}} a|00\rangle + b|01\rangle + c|10\rangle - d|11\rangle$$



- **The Toffoli gate:** Has two control qubits that are left unaffected, and a target qubit.

Notation: $\wedge \wedge X$.

Action: It acts as identity except when both controlled qubits are $|1\rangle$ where we apply X to the target qubit:

$$|A\rangle|B\rangle|C\rangle \xrightarrow{\wedge \wedge X} |A\rangle|B\rangle X^{AB}|C\rangle = |A\rangle|B\rangle|C \oplus AB\rangle$$

- **The Toffoli gate:** Has two control qubits that are left unaffected, and a target qubit.

Notation: $\wedge \wedge X$.

Action: It acts as identity except when both controlled qubits are $|1\rangle$ where we apply X to the target qubit:

$$|A\rangle |B\rangle |C\rangle \xrightarrow{\wedge \wedge X} |A\rangle |B\rangle X^{AB} |C\rangle = |A\rangle |B\rangle |C \oplus AB\rangle$$

