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General quantum channels (operations)

Examples

Purification

(]

Schmidt Decomposition
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General Quantum Channels and CPTP Maps

@ We saw how to evolve states with unitaries

@ Pure states remain pure!
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General Quantum Channels and CPTP Maps

@ We saw how to evolve states with unitaries
@ Pure states remain pure!

o What if
e evolve with some probability with U; and some other with U,?
o Discard a subsystem?
e Measure a subsystem?
o Prepare a specific state?
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General Quantum Channels and CPTP Maps

We saw how to evolve states with unitaries

@ Pure states remain pure!

What if

e evolve with some probability with U; and some other with U,?

o Discard a subsystem?
e Measure a subsystem?
o Prepare a specific state?

We need a more general concept of ‘evolution’, that we call a
qguantum channel

o It should be a map: £(p) =/, that is (i) linear, (ii)
trace-preserving, (iii) maps density matrices to density matrices

@ Most general: E(p) := Trp (U(,O ® |a) <9‘B)UT)
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General Quantum Channels and CPTP Maps

P= M)Y&Ha—: [j
10‘) y /%E;;i> m:XQA

@ Append an extra system, evolve (unitary), discard extra
system!
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General Quantum Channels and CPTP Maps

P=1pygp— :[
10‘) y /%E;;i> m:XQA

@ Append an extra system, evolve (unitary), discard extra
system!

@ Can be defined in terms of the Kraus representation:

= ExpE] where Y E[E =1
k k
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Unitary Channels and State Preparation Channels

o Unitaries are (simple) channels: £(p) = UpU"
with a single Kraus operator £; = U

@ Check: obeys Kraus condition
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Unitary Channels and State Preparation Channels

Unitaries are (simple) channels: £y(p) = UpUT

with a single Kraus operator £; = U

Check: obeys Kraus condition

Prepare state |1)) € H
Define E1 = [¢) (0] , Ex = |¢) (1]

Check: obeys Kraus condition, gives £(|x) (x| = [¢) () for
both x = 0,1
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Measurement Channels

o Consider a measurement given by a POVM { M, }; with Kraus
operators M; = KI.TK,-

o Consider a measurement device/register initiated at |0) (0],
taking / different values

@ Define the channel: E; := K; @ |i) (0,
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Measurement Channels

o Consider a measurement given by a POVM { M, }; with Kraus
operators M; = KI.TK,-

o Consider a measurement device/register initiated at |0) (0],
taking / different values

@ Define the channel: E; := K; @ |i) (0,

Emeas(p ® 10) { Zam 10) (O £ = Kipk{ @ i) (il

- ok (KK o i
-3 (Te(ioK)) <TY(K,.,)K;)) @ (I i)
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Measurement Channels

o Consider a measurement given by a POVM { M, }; with Kraus
operators M; = KI.TK,-

o Consider a measurement device/register initiated at |0) (0],
taking / different values

@ Define the channel: E; := K; @ |i) (0,

Emeas(p ® 10) { ZE,;@ 10) (O £ = Kipk{ @ i) (il

- ok (KK o i
-3 (Te(ioK)) <TY(K,.,)K;)> @ (I i)

o Outcome 7 with prob p(i) = Tr(KipK) and
KipK/!

post-measurement state —
Tr(KipK,')
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Examples: “famous” channels

e Bit flip channel: £(p) = pp+ (1 — p)XpX
Which is the Kraus rep?

@ Phase flip: E(p) =pp+ (1 —p)ZpZ

@ Depolarising: £(p) = (1 — p)p + pl/2

Equivalent with prob p/4 apply X, Y. Z and nothing with the
rest 1 — 3p/4 (see tutorial 2)
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Examples: “famous” channels

e Bit flip channel: £(p) = pp+ (1 — p)XpX
Which is the Kraus rep?

@ Phase flip: E(p) =pp+ (1 —p)ZpZ

@ Depolarising: £(p) = (1 — p)p + pl/2

Equivalent with prob p/4 apply X, Y. Z and nothing with the
rest 1 — 3p/4 (see tutorial 2)

e Dephasing: Eg = /1 —pl; E1 = /p|0) (0] ; E2 = /p|1) (1]
Check its effect on |0) and |+) states!

o Amplitude damping:

Eo =1]0) (0l + /(1 = p)[1) (1] ; E2 = /P[0) (1]
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@ Assume we have a mixed state p. Can we find a pure state on
a larger space that its reduced matrix is our state?
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@ Assume we have a mixed state p. Can we find a pure state on
a larger space that its reduced matrix is our state?

Definition: purification

Given p4, a pure state [1) 55 is a purification of p4 if
pa = Trg (|¢) (¥|48)
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@ Assume we have a mixed state p. Can we find a pure state on
a larger space that its reduced matrix is our state?

Definition: purification

Given p4, a pure state [1) 55 is a purification of p4 if
pa = Trg (|¢) (¥|48)

e Can we purify any mixed state? (yes)
- Diagonalise pa = > \i i) (¢i]
where A, |¢;) eigenvalues and eigenvectors

- Add system B where d4 = dg, and orthonormal basis {|e;) 5}/

Vag) = 2 Vi 814 @ lei)g

- Prepare the state:
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@ Assume we have a mixed state p. Can we find a pure state on
a larger space that its reduced matrix is our state?

Definition: purification

Given p4, a pure state [1) 55 is a purification of p4 if
pa = Trg (|¢) (¥|48)

e Can we purify any mixed state? (yes)
- Diagonalise pa = > \i i) (¢i]
where A, |¢;) eigenvalues and eigenvectors
- Add system B where d4 = dg, and orthonormal basis {|e;) 5}/
ag) = D Vi [i)a @ |ei)g

e This is a purification (check definition!)

- Prepare the state:
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Schmidt Decomposition

o A two-qubit pure state, can have all non-zero terms . ¢; [ij)

e Can find a basis that it only has “diagonal” terms:
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Schmidt Decomposition

o A two-qubit pure state, can have all non-zero terms . ¢; [ij)

e Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

Suppose |1)) o5 pure state. There exists orthonormal bases
lia) , |I) g such that

[vag) = Z Vi lia) lig)

where \/)\; are non-negative real numbers satisfying > . \; =1
known as Schmidt coefficients
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Schmidt Decomposition

o A two-qubit pure state, can have all non-zero terms . ¢; [ij)

e Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

Suppose |1)) o5 pure state. There exists orthonormal bases
lia) , |I) g such that

[vag) = Z Vi lia) lig)

where \/)\; are non-negative real numbers satisfying > . \; =1
known as Schmidt coefficients

® pa=2_;Ailia) (ia| and pg =>_; Ailig) (is|

Reduced states have same eigenvalues!

(related with entropy and information; see next lecture)
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