

Quantum Cyber Security

Lecture 6: Quantum Information Basics IV

Petros Wallden

University of Edinburgh

29th January 2026

- General quantum channels (operations)
- Examples
- Purification
- Schmidt Decomposition

- We saw how to evolve states with unitaries
- Pure states remain pure!

- We saw how to evolve states with unitaries
- Pure states remain pure!
- What if
 - evolve with some probability with U_1 and some other with U_2 ?
 - Discard a subsystem?
 - Measure a subsystem?
 - Prepare a specific state?

- We saw how to evolve states with unitaries
- Pure states remain pure!
- What if
 - evolve with some probability with U_1 and some other with U_2 ?
 - Discard a subsystem?
 - Measure a subsystem?
 - Prepare a specific state?
- We need a more general concept of 'evolution', that we call a **quantum channel**
- It should be a map: $\mathcal{E}(\rho) = \rho'$, that is (i) linear, (ii) trace-preserving, (iii) maps density matrices to density matrices
- Most general: $\mathcal{E}(\rho) := \text{Tr}_B (U(\rho \otimes |a\rangle \langle a|_B)U^\dagger)$

- Append an extra system, evolve (unitary), discard extra system!

- Append an extra system, evolve (unitary), discard extra system!
- Can be defined in terms of the Kraus representation:

$$\mathcal{E}(\rho) = \sum_k E_k \rho E_k^\dagger \quad \text{where} \quad \sum_k E_k^\dagger E_k = \mathbb{I}$$

- Unitaries are (simple) channels: $\mathcal{E}_U(\rho) = U\rho U^\dagger$
with a single Kraus operator $E_1 = U$
- Check: obeys Kraus condition

- Unitaries are (simple) channels: $\mathcal{E}_U(\rho) = U\rho U^\dagger$ with a single Kraus operator $E_1 = U$
- Check: obeys Kraus condition
- Prepare state $|\psi\rangle \in \mathcal{H}$
 - Define $E_1 = |\psi\rangle\langle 0|$, $E_2 = |\psi\rangle\langle 1|$
 - Check: obeys Kraus condition, gives $\mathcal{E}(|x\rangle\langle x|) = |\psi\rangle\langle\psi|$ for both $x = 0, 1$

Measurement Channels

- Consider a measurement given by a POVM $\{M_i\}_i$ with Kraus operators $M_i = K_i^\dagger K_i$
- Consider a measurement device/register initiated at $|0\rangle\langle 0|_M$, taking i different values
- Define the channel: $E_i := K_i \otimes |i\rangle\langle 0|_M$

- Consider a measurement given by a POVM $\{M_i\}_i$ with Kraus operators $M_i = K_i^\dagger K_i$
- Consider a measurement device/register initiated at $|0\rangle\langle 0|_M$, taking i different values
- Define the channel: $E_i := K_i \otimes |i\rangle\langle 0|_M$

$$\begin{aligned}\mathcal{E}_{meas}(\rho \otimes |0\rangle\langle 0|) &= \sum_i E_i \rho \otimes |0\rangle\langle 0| E_i^\dagger = \sum_i K_i \rho K_i^\dagger \otimes |i\rangle\langle i| \\ &= \sum_i \left(\text{Tr}(K_i \rho K_i^\dagger) \right) \left(\frac{K_i \rho K_i^\dagger}{\text{Tr}(K_i \rho K_i^\dagger)} \right) \otimes (|i\rangle\langle i|)\end{aligned}$$

Measurement Channels

- Consider a measurement given by a POVM $\{M_i\}_i$ with Kraus operators $M_i = K_i^\dagger K_i$
- Consider a measurement device/register initiated at $|0\rangle\langle 0|_M$, taking i different values
- Define the channel: $E_i := K_i \otimes |i\rangle\langle 0|_M$

$$\mathcal{E}_{meas}(\rho \otimes |0\rangle\langle 0|) = \sum_i E_i \rho \otimes |0\rangle\langle 0| E_i^\dagger = \sum_i K_i \rho K_i^\dagger \otimes |i\rangle\langle i|$$

$$= \sum_i \left(\text{Tr}(K_i \rho K_i^\dagger) \right) \left(\frac{K_i \rho K_i^\dagger}{\text{Tr}(K_i \rho K_i^\dagger)} \right) \otimes (|i\rangle\langle i|)$$

- Outcome i with prob $p(i) = \text{Tr}(K_i \rho K_i^\dagger)$ and post-measurement state $\frac{K_i \rho K_i^\dagger}{\text{Tr}(K_i \rho K_i^\dagger)}$

- Bit flip channel: $\mathcal{E}(\rho) = p\rho + (1 - p)X\rho X$

Which is the Kraus rep?

- Phase flip: $\mathcal{E}(\rho) = p\rho + (1 - p)Z\rho Z$

- Depolarising: $\mathcal{E}(\rho) = (1 - p)\rho + p\mathbb{I}/2$

Equivalent with prob $p/4$ apply X, Y, Z and nothing with the rest $1 - 3p/4$ (see tutorial 2)

- Bit flip channel: $\mathcal{E}(\rho) = p\rho + (1 - p)X\rho X$

Which is the Kraus rep?

- Phase flip: $\mathcal{E}(\rho) = p\rho + (1 - p)Z\rho Z$

- Depolarising: $\mathcal{E}(\rho) = (1 - p)\rho + p\mathbb{I}/2$

Equivalent with prob $p/4$ apply X, Y, Z and nothing with the rest $1 - 3p/4$ (see tutorial 2)

- Dephasing: $E_0 = \sqrt{1 - p}\mathbb{I}$; $E_1 = \sqrt{p}|0\rangle\langle 0|$; $E_2 = \sqrt{p}|1\rangle\langle 1|$

Check its effect on $|0\rangle$ and $|+\rangle$ states!

- Amplitude damping:

$$E_0 = 1|0\rangle\langle 0| + \sqrt{(1 - p)}|1\rangle\langle 1| \quad ; \quad E_1 = \sqrt{p}|0\rangle\langle 1|$$

- Assume we have a mixed state ρ . Can we find a pure state on a larger space that its reduced matrix is our state?

- Assume we have a mixed state ρ . Can we find a pure state on a larger space that its reduced matrix is our state?

Definition: purification

Given ρ_A , a pure state $|\psi\rangle_{AB}$ is a purification of ρ_A if
 $\rho_A = \text{Tr}_B (|\psi\rangle\langle\psi|_{AB})$

- Assume we have a mixed state ρ . Can we find a pure state on a larger space that its reduced matrix is our state?

Definition: purification

Given ρ_A , a pure state $|\psi\rangle_{AB}$ is a purification of ρ_A if
 $\rho_A = \text{Tr}_B (|\psi\rangle\langle\psi|_{AB})$

- Can we purify any mixed state? (yes)
 - Diagonalise $\rho_A = \sum_i \lambda_i |\phi_i\rangle\langle\phi_i|$ where $\lambda_i, |\phi_i\rangle$ eigenvalues and eigenvectors
 - Add system B where $d_A = d_B$, and orthonormal basis $\{|e_i\rangle_B\}_i$
 - Prepare the state: $|\psi_{AB}\rangle = \sum_i \sqrt{\lambda_i} |\phi_i\rangle_A \otimes |e_i\rangle_B$

- Assume we have a mixed state ρ . Can we find a pure state on a larger space that its reduced matrix is our state?

Definition: purification

Given ρ_A , a pure state $|\psi\rangle_{AB}$ is a purification of ρ_A if
 $\rho_A = \text{Tr}_B (|\psi\rangle \langle \psi|_{AB})$

- Can we purify any mixed state? (yes)
 - Diagonalise $\rho_A = \sum_i \lambda_i |\phi_i\rangle \langle \phi_i|$ where $\lambda_i, |\phi_i\rangle$ eigenvalues and eigenvectors
 - Add system B where $d_A = d_B$, and orthonormal basis $\{|e_i\rangle_B\}_i$
 - Prepare the state: $|\psi_{AB}\rangle = \sum_i \sqrt{\lambda_i} |\phi_i\rangle_A \otimes |e_i\rangle_B$
- This is a purification (check definition!)

- A two-qubit pure state, can have all non-zero terms $\sum_{ij} c_{ij} |ij\rangle$
- Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

- A two-qubit pure state, can have all non-zero terms $\sum_{ij} c_{ij} |ij\rangle$
- Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

Suppose $|\psi\rangle_{AB}$ pure state. There exists orthonormal bases $|i_A\rangle, |i\rangle_B$ such that

$$|\psi_{AB}\rangle = \sum_i \sqrt{\lambda_i} |i_A\rangle |i_B\rangle$$

where $\sqrt{\lambda_i}$ are non-negative real numbers satisfying $\sum_i \lambda_i = 1$
known as Schmidt coefficients

Schmidt Decomposition

- A two-qubit pure state, can have all non-zero terms $\sum_{ij} c_{ij} |ij\rangle$
- Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

Suppose $|\psi\rangle_{AB}$ pure state. There exists orthonormal bases $|i_A\rangle, |i\rangle_B$ such that

$$|\psi_{AB}\rangle = \sum_i \sqrt{\lambda_i} |i_A\rangle |i_B\rangle$$

where $\sqrt{\lambda_i}$ are non-negative real numbers satisfying $\sum_i \lambda_i = 1$
known as Schmidt coefficients

- $\rho_A = \sum_i \lambda_i |i_A\rangle \langle i_A|$ and $\rho_B = \sum_i \lambda_i |i_B\rangle \langle i_B|$

Reduced states have same eigenvalues!

(related with entropy and information; see next lecture)