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This Lecture

General quantum channels (operations)

Examples

Purification

Schmidt Decomposition
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General Quantum Channels and CPTP Maps

We saw how to evolve states with unitaries

Pure states remain pure!

What if
evolve with some probability with U1 and some other with U2?
Discard a subsystem?
Measure a subsystem?
Prepare a specific state?

We need a more general concept of ‘evolution’, that we call a
quantum channel

It should be a map: E(ρ) = ρ′, that is (i) linear, (ii)
trace-preserving, (iii) maps density matrices to density matrices

Most general: E(ρ) := TrB
(
U(ρ⊗ |a⟩ ⟨a|B)U†)
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General Quantum Channels and CPTP Maps

Append an extra system, evolve (unitary), discard extra
system!

Can be defined in terms of the Kraus representation:

E(ρ) =
∑
k

EkρE
†
k where

∑
k

E †
kEk = I
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Unitary Channels and State Preparation Channels

Unitaries are (simple) channels: EU(ρ) = UρU†

with a single Kraus operator E1 = U

Check: obeys Kraus condition

Prepare state |ψ⟩ ∈ H

- Define E1 = |ψ⟩ ⟨0| , E2 = |ψ⟩ ⟨1|

- Check: obeys Kraus condition, gives E(|x⟩ ⟨x | = |ψ⟩ ⟨ψ|) for
both x = 0, 1
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Measurement Channels

Consider a measurement given by a POVM {Mi}i with Kraus
operators Mi = K †

i Ki

Consider a measurement device/register initiated at |0⟩ ⟨0|M ,
taking i different values

Define the channel: Ei := Ki ⊗ |i⟩ ⟨0|M

Emeas(ρ⊗ |0⟩ ⟨0|) =
∑
i

Eiρ⊗ |0⟩ ⟨0|E †
i =

∑
i

KiρK
†
i ⊗ |i⟩ ⟨i |

=
∑
i

(
Tr(KiρK

†
i )
)( KiρK

†
i

Tr(KiρK
†
i )

)
⊗ (|i⟩ ⟨i |)

Outcome i with prob p(i) = Tr(KiρK
†
i ) and

post-measurement state KiρK
†
i

Tr(KiρK
†
i )
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Examples: “famous” channels

Bit flip channel: E(ρ) = pρ+ (1 − p)XρX

Which is the Kraus rep?

Phase flip: E(ρ) = pρ+ (1 − p)ZρZ

Depolarising: E(ρ) = (1 − p)ρ+ pI/2

Equivalent with prob p/4 apply X ,Y ,Z and nothing with the
rest 1 − 3p/4 (see tutorial 2)

Dephasing: E0 =
√

1 − pI ; E1 =
√
p |0⟩ ⟨0| ; E2 =

√
p |1⟩ ⟨1|

Check its effect on |0⟩ and |+⟩ states!

Amplitude damping:
E0 = 1 |0⟩ ⟨0|+

√
(1 − p) |1⟩ ⟨1| ; E1 =

√
p |0⟩ ⟨1|
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Purification

Assume we have a mixed state ρ. Can we find a pure state on
a larger space that its reduced matrix is our state?

Definition: purification

Given ρA, a pure state |ψ⟩AB is a purification of ρA if
ρA = TrB (|ψ⟩ ⟨ψ|AB)

Can we purify any mixed state? (yes)

- Diagonalise ρA =
∑

i λi |ϕi ⟩ ⟨ϕi |

where λi , |ϕi ⟩ eigenvalues and eigenvectors

- Add system B where dA = dB , and orthonormal basis {|ei ⟩B}i
- Prepare the state: |ψAB⟩ =

∑
i

√
λi |ϕi ⟩A ⊗ |ei ⟩B

This is a purification (check definition!)
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Schmidt Decomposition

A two-qubit pure state, can have all non-zero terms
∑

ij cij |ij⟩

Can find a basis that it only has “diagonal” terms:

Schmidt Decomposition

Suppose |ψ⟩AB pure state. There exists orthonormal bases
|iA⟩ , |i⟩B such that

|ψAB⟩ =
∑
i

√
λi |iA⟩ |iB⟩

where
√
λi are non-negative real numbers satisfying

∑
i λi = 1

known as Schmidt coefficients

ρA =
∑

i λi |iA⟩ ⟨iA| and ρB =
∑

i λi |iB⟩ ⟨iB |

Reduced states have same eigenvalues!

(related with entropy and information; see next lecture)
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