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Categorical semantics

Want:
» Compositionality: [F; G] = [G] o [F]
» Concurrency: [F par G| = [F] ® [G]
» Recursion: [F(X)] = [F]([X])
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Categorical semantics

Want:
» Compositionality: [F; G] = [G] o [F]
» Concurrency: [F par G| = [F] ® [G]
» Recursion: [F(X)] = [F]([X])

Where can [F] live?
» \-calculus
» partially ordered sets
> categories

Instantiate in different categories:
> Isolate differences between quantum and classical behaviour
» Apply quantum thinking to other settings
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Categories

Category theory is a way of thinking more than deep theorems

“The essential virtue of category theory is as a discipline for
making definitions, the programmer’s main task in life.”
— D. E. Rydeheard

“Good general theory does not search for the maximum

generality, but for the right generality.”
— S. Mac Lane
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Categories

Categories consist of
> objects A,B,C, ...

» morphisms A 1. B going between objects
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Categories

Categories consist of
> objects A,B,C, ...
» morphisms A 1. B going between objects
Examples:
» physical systems, physical processes governing them
» data types, algorithms manipulating them
> algebraic/geometric structures, structure-preserving functions
> logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

4/24



Categories

A category C consists of the following data:
» a collection Ob(C) of objects

» for every pair of objects A and B, a collection C(A, B) of
morphisms, with f € C(A, B) written A N
» for all morphisms A f.BandBSCa composite A Ny
» for every object A an identity morphism A dda, A
such that:
» associativity: ho (gof) = (hog)of
» identity: idgof =f =foida
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Sets and functions

The category Set of sets and functions:
» objects are sets A,B, C, ...
» morphisms are functions f, g, h, . ..
» composition of A £, B and B4 C is the function gof:aw— g(f(a))
» the identity morphism on A is the function ids: a — a
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Sets and functions

The category Set of sets and functions:
» objects are sets A,B, C, ...
» morphisms are functions f, g, h, . ..
» composition of A £, B and B4 C is the function gof:aw— g(f(a))
» the identity morphism on A is the function ids: a — a

Think of a function A% B dynamically, as indicating how elements of
A can evolve into elements of B

f

A——B
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Relations

Given sets A and B, a relation A& B is a subset R C A x B.

Nondeterministic: an element of A can relate to more than one
element of B, or to none.
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Composition of relations
Suppose we have a pair of head-to-tail relations:

R S

A—B B—C
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Composition of relations
Suppose we have a pair of head-to-tail relations:

R S

A—B B—C

Then our interpretation gives a natural notion of composition:

SoR
A > C

|
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Relations as matrices

We can write relations as (0,1)-valued matrices:
0 00O
o~ 0111
0 001

Composition of relations is then ordinary matrix multiplication, with
logical disjunction (OR) and conjunction (AND) for + and x.
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Sets and relations

The category Rel of sets and relations:
» objects are sets A,B, C, . . .;
» morphisms are relations R C A x B, with (a,b) € R written aRb;
> composition A-®- B -5 Cis {(a,c) €A x C|3b € B: aRb,bSc};
» the identity morphism on A is {(a,a) € A x A |a € A}.
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Sets and relations

The category Rel of sets and relations:
» objects are sets A,B, C, . . .;
» morphisms are relations R C A x B, with (a,b) € R written aRb;
> composition A-®- B -5 Cis {(a,c) €A x C|3b € B: aRb,bSc};
» the identity morphism on A is {(a,a) € A x A |a € A}.

It seems like Rel should be a lot like Set,
but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics,

and Hilb is a setting for quantum physics,
Rel is somewhere in the middle.
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Diagrams

Helps to draw diagrams, indicating how morphisms compose

f g

A
hh i
D

N

k

M+
f—.

Diagram commutes if every path from object to another is equal

Two ways to speak about equality of composite morphisms:
algebraic equations, and commuting diagrams.
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Terminology

For morphism A LB
» A isits domain
» B is its codomain
» fis endomorphism if A =B
» fis isomorphism if f~! o f = idy, f o f~! = idp for some B I A

» A and B are isomorphic (A ~ B) if there is isomorphism A — B
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Terminology

For morphism A LB
» A isits domain
» B is its codomain
» fis endomorphism if A =B
» fis isomorphism if f~! o f = idy, f o f~! = idp for some B I A

» A and B are isomorphic (A ~ B) if there is isomorphism A — B

If a morphism has an inverse, it is unique:
g=goid=go(fog)=(gof)og =idog =¢

A groupoid is a category where every morphism is an isomorphism
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Graphical notation

Draw object A as:

It’s Just a line. Think of it as a picture of the identity morphism
A~ A, Remember: morphisms are more important than objects.
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Graphical notation

Draw object A as:

It’s Just a line. Think of it as a picture of the identity morphism
A -4 A. Remember: morphisms are more important than objects.

Draw morphism A i> B as:
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Graphical notation

Draw composition of A i> Band B % C as:
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Graphical notation

Identity law and associativity law become:
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Graphical notation

Identity law and associativity law become:

This one-dimensional representation is familiar; we usually draw it
horizontally, and call it algebra. The graphical calculus ‘absorbs’ the
axioms of a category.
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Functors

Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F: C— D is:

» for each object A € Ob(C), an object F(A) € Ob(D)

» for each morphism A £.Bin C, a morphism F(A) 0, g (B) inD
such that structure is preserved:

> F(gof) =F(g) oF(f) for morphismsALBﬁ CinC

> F(ida) = idp(a) for objects A in C
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Functors

Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F: C— D is:

» for each object A € Ob(C), an object F(A) € Ob(D)

» for each morphism A £.Bin C, a morphism F(A) 0, g (B) inD
such that structure is preserved:

> F(gof) =F(g) oF(f) for morphismsALBﬁ CinC

> F(ida) = idp(a) for objects A in C

It is:
» full when f — F(f) are surjections C(A,B) — D(F(A),F(B))
» faithful when f — F(f) are injections C(A,B) — D(F(A),F(B))

» essentially surjective on objects each B € Ob(D) is isomorphic to
F(A) for some A € Ob(C)

» equivalence when full, faithful, essentially surjective on objects
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Natural transformations

Given functors F,G: C— D, a natural transformation (: F — G
assigns to every object A in C of a morphism F(A) 4, G(A) in D,
such that for every morphism A = B in C:

F(A) “

G(A)

F(f) G(f)

- .G
F(B) o (B)

If every component (4 is an isomorphism then ( is called a natural
isomorphism, and F and G are said to be naturally isomorphic.
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Natural transformations

Given functors F,G: C— D, a natural transformation (: F — G
assigns to every object A in C of a morphism F(A) 4, G(A) in D,
such that for every morphism A = B in C:

G

F(A) G(A)

F(f) G(f)

- .G
F(B) o (B)

If every component (4 is an isomorphism then ( is called a natural
isomorphism, and F and G are said to be naturally isomorphic.

A functor F: C— D is an equivalence if and only if there is a functor
G: D — C and natural isomorphisms G o F ~ id¢ and F o G ~ idp.
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Products

Given objects A and B, a product is:
> an object A x B
» morphisms A x B-?4 A and A x B2 B

such that any two morphisms X S, Aand X4 B allow a unique

morphism ({;):XHA x B with pa o (é) =fand pgo (ch> —g

Universal property: A x B is universal way to put A and B together
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Vector spaces
Set V with element 0, functions +: VxV—V,and -: Cx V—V

>

vVvvyVvVvVvyyy

additive associativity: u+ (v+w) = (u+v) +w;

additive commutativity: u +v =v + u;

additive unit: v+ 0 = v;

additive inverses: there exists a —v € V such that v + (—v) = 0;
additive distributivity: a - (u+v) = (a-u) + (a-v)

scalar unit: 1-v =v;

scalar distributivity: (a+b)-v=(a-v)+ (b-v);

scalar compatibility: a- (b -v) = (ab) - v.

V+w

Example: C"

19/24



Linear maps

Function f: V— W is linear when

Fv+w) = F(v) +f£(w)
fla-v) =a-f)

Vector spaces and linear maps form a category Vect
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Bases and matrices

» Vectors {e;} form basis when any vector v takes the form
v =) ;vie; for v; € C in precisely one way.

» Any vector space has a basis
any two bases have the same cardinality: dimension

» Finite-dimensional vector spaces and linear maps
form a category FVect
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Bases and matrices

» Vectors {e;} form basis when any vector v takes the form
v =) ;vie; for v; € C in precisely one way.

» Any vector space has a basis
any two bases have the same cardinality: dimension

» Finite-dimensional vector spaces and linear maps
form a category FVect

» Given bases {d;} and {e;}, linear map V Lw gives matrix f(d;);,

and vice versa

» There is a category Mat¢ of natural numbers and matrices
There is an equivalence Matc — FVect given by n — C"
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Hilbert spaces

Vector space H with inner product (—|—): H x H— C such that
» conjugate-symmetric: (v|w) = (w|v)*

» linear in second argument:
(vla-w) =a- (vjw) and (u|v+w) = (u|v) + (ujw)

» positive definite: (v|v) > 0 with equality iff v =0

» complete in the norm |[v|| = \/(v|v)
Gf 7%, [vill < oo then limy, |[v — Y1, vi|| = O for some v)
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Hilbert spaces

Vector space H with inner product (—|—): H x H— C such that
» conjugate-symmetric: (v|w) = (w|v)*

» linear in second argument:
(vla-w) =a- (vjw) and (u|v+w) = (u|v) + (ujw)

» positive definite: (v|v) > 0 with equality iff v =0

» complete in the norm |[v|| = \/(v|v)
Gf 0727 vill < oo then limy, |[v — >°1; vi|| = O for some v)

Linear f: H— K is bounded when |[f(v)|| < |If|| - ||v|| for some ||f]| € R

Hilbert spaces and bounded linear maps form category Hilb
Finite-dimensional Hilbert spaces form category FHilb
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Dual space

> Basis is orthogonal when (e;|ej) = 0 for i # j;
orthonormal if (e;|e;) = 1

.

» Bounded H %5 K has adjoint K £ H with (f(v)|w) = (v[ff(w))
(conjugate transpose matrix)

» Givenv € H, its ket C1 H is 2 = 2v; bra H-L Cisw s (viw)

» Dual Hilbert space H* is Hilb(H, C)
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Summary

v

vVvyyy

Categories: objects and (more importantly) morphisms

Examples: sets and functions, sets and relations, vector spaces
and linear functions, Hilbert spaces and bounded linear
functions

Isomorphic objects: behave the same
Functors: ‘morphisms between categories’
Equivalent categories: behave the same
Products: combine objects universally
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