
Introduction to Quantum Programming
and Semantics

Week 2: Categories, Hilbert spaces

Chris Heunen

1 / 24

Categorical semantics

Want:
▶ Compositionality: JF; GK = JGK ◦ JFK
▶ Concurrency: JF par GK = JFK ⊗ JGK
▶ Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
▶ λ-calculus
▶ partially ordered sets
▶ categories

Instantiate in different categories:
▶ Isolate differences between quantum and classical behaviour
▶ Apply quantum thinking to other settings

2 / 24

Categorical semantics

Want:
▶ Compositionality: JF; GK = JGK ◦ JFK
▶ Concurrency: JF par GK = JFK ⊗ JGK
▶ Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
▶ λ-calculus
▶ partially ordered sets
▶ categories

Instantiate in different categories:
▶ Isolate differences between quantum and classical behaviour
▶ Apply quantum thinking to other settings

2 / 24

Categorical semantics

Want:
▶ Compositionality: JF; GK = JGK ◦ JFK
▶ Concurrency: JF par GK = JFK ⊗ JGK
▶ Recursion: JF(X)K = JFK(JXK)

Where can JFK live?
▶ λ-calculus
▶ partially ordered sets
▶ categories

Instantiate in different categories:
▶ Isolate differences between quantum and classical behaviour
▶ Apply quantum thinking to other settings

2 / 24

Categories

Category theory is a way of thinking more than deep theorems

“The essential virtue of category theory is as a discipline for
making definitions, the programmer’s main task in life.”

– D. E. Rydeheard

“Good general theory does not search for the maximum
generality, but for the right generality.”

– S. Mac Lane

3 / 24

Categories

Categories consist of
▶ objects A,B,C, . . .
▶ morphisms A f B going between objects

Examples:
▶ physical systems, physical processes governing them
▶ data types, algorithms manipulating them
▶ algebraic/geometric structures, structure-preserving functions
▶ logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

4 / 24

Categories

Categories consist of
▶ objects A,B,C, . . .
▶ morphisms A f B going between objects

Examples:
▶ physical systems, physical processes governing them
▶ data types, algorithms manipulating them
▶ algebraic/geometric structures, structure-preserving functions
▶ logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

4 / 24

Categories

Categories consist of
▶ objects A,B,C, . . .
▶ morphisms A f B going between objects

Examples:
▶ physical systems, physical processes governing them
▶ data types, algorithms manipulating them
▶ algebraic/geometric structures, structure-preserving functions
▶ logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects
“Morphisms are more important than objects”

4 / 24

Categories

A category C consists of the following data:
▶ a collection Ob(C) of objects
▶ for every pair of objects A and B, a collection C(A,B) of

morphisms, with f ∈ C(A,B) written A f B
▶ for all morphisms A f B and B g C a composite A g◦f C
▶ for every object A an identity morphism A idA A

such that:
▶ associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f
▶ identity: idB ◦ f = f = f ◦ idA

5 / 24

Sets and functions

The category Set of sets and functions:
▶ objects are sets A,B,C, . . .
▶ morphisms are functions f , g, h, . . .
▶ composition of A f B and B g C is the function g ◦ f : a 7→ g(f(a))
▶ the identity morphism on A is the function idA : a 7→ a

Think of a function A f B dynamically, as indicating how elements of
A can evolve into elements of B

A B
f

6 / 24

Sets and functions

The category Set of sets and functions:
▶ objects are sets A,B,C, . . .
▶ morphisms are functions f , g, h, . . .
▶ composition of A f B and B g C is the function g ◦ f : a 7→ g(f(a))
▶ the identity morphism on A is the function idA : a 7→ a

Think of a function A f B dynamically, as indicating how elements of
A can evolve into elements of B

A B
f

6 / 24

Relations

Given sets A and B, a relation A R B is a subset R ⊆ A × B.

A B
R

Nondeterministic: an element of A can relate to more than one
element of B, or to none.

7 / 24

Composition of relations
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

8 / 24

Composition of relations
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

8 / 24

Relations as matrices

We can write relations as (0,1)-valued matrices:

A B
R

↭

0 0 0 0
0 1 1 1
0 0 0 1



Composition of relations is then ordinary matrix multiplication, with
logical disjunction (OR) and conjunction (AND) for + and ×.

9 / 24

Sets and relations

The category Rel of sets and relations:
▶ objects are sets A,B,C, . . .;
▶ morphisms are relations R ⊆ A × B, with (a, b) ∈ R written aRb;
▶ composition A R B S C is {(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};
▶ the identity morphism on A is {(a, a) ∈ A × A | a ∈ A}.

It seems like Rel should be a lot like Set,
but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics,
and Hilb is a setting for quantum physics,
Rel is somewhere in the middle.

10 / 24

Sets and relations

The category Rel of sets and relations:
▶ objects are sets A,B,C, . . .;
▶ morphisms are relations R ⊆ A × B, with (a, b) ∈ R written aRb;
▶ composition A R B S C is {(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};
▶ the identity morphism on A is {(a, a) ∈ A × A | a ∈ A}.

It seems like Rel should be a lot like Set,
but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics,
and Hilb is a setting for quantum physics,
Rel is somewhere in the middle.

10 / 24

Diagrams

Helps to draw diagrams, indicating how morphisms compose

A B C

D E

f g

h i
j

k

Diagram commutes if every path from object to another is equal

Two ways to speak about equality of composite morphisms:
algebraic equations, and commuting diagrams.

11 / 24

Terminology

For morphism A f B
▶ A is its domain
▶ B is its codomain
▶ f is endomorphism if A = B
▶ f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
▶ A and B are isomorphic (A ≃ B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

12 / 24

Terminology

For morphism A f B
▶ A is its domain
▶ B is its codomain
▶ f is endomorphism if A = B
▶ f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
▶ A and B are isomorphic (A ≃ B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

12 / 24

Terminology

For morphism A f B
▶ A is its domain
▶ B is its codomain
▶ f is endomorphism if A = B
▶ f is isomorphism if f−1 ◦ f = idA, f ◦ f−1 = idB for some B f−1

A
▶ A and B are isomorphic (A ≃ B) if there is isomorphism A B

If a morphism has an inverse, it is unique:

g = g ◦ id = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = id ◦ g′ = g′

A groupoid is a category where every morphism is an isomorphism

12 / 24

Graphical notation

Draw object A as:

A

It’s just a line. Think of it as a picture of the identity morphism
A idA A. Remember: morphisms are more important than objects.

Draw morphism A
f−→ B as:

B

A

f

13 / 24

Graphical notation

Draw object A as:

A

It’s just a line. Think of it as a picture of the identity morphism
A idA A. Remember: morphisms are more important than objects.

Draw morphism A
f−→ B as:

B

A

f

13 / 24

Graphical notation

Draw composition of A
f−→ B and B

g−→ C as:

C

A

B

f

g

14 / 24

Graphical notation

Identity law and associativity law become:

A

A

B

f

idA

=

A

B

f =

A

B

B

f

idB

f

g

h

D

C

A

B

 


=

f

g

h

D

C

A

B

 



This one-dimensional representation is familiar; we usually draw it
horizontally, and call it algebra. The graphical calculus ‘absorbs’ the
axioms of a category.

15 / 24

Graphical notation

Identity law and associativity law become:

A

A

B

f

idA

=

A

B

f =

A

B

B

f

idB

f

g

h

D

C

A

B

 


=

f

g

h

D

C

A

B

 



This one-dimensional representation is familiar; we usually draw it
horizontally, and call it algebra. The graphical calculus ‘absorbs’ the
axioms of a category.

15 / 24

Functors
Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F : C D is:
▶ for each object A ∈ Ob(C), an object F(A) ∈ Ob(D)

▶ for each morphism A f B in C, a morphism F(A) F(f) F(B) in D

such that structure is preserved:
▶ F(g ◦ f) = F(g) ◦ F(f) for morphisms A f B g C in C
▶ F(idA) = idF(A) for objects A in C

It is:
▶ full when f 7→ F(f) are surjections C(A,B) D(F(A), F(B))
▶ faithful when f 7→ F(f) are injections C(A,B) D(F(A), F(B))
▶ essentially surjective on objects each B ∈ Ob(D) is isomorphic to

F(A) for some A ∈ Ob(C)
▶ equivalence when full, faithful, essentially surjective on objects

16 / 24

Functors
Morphisms are more important than objects: what about categories
themselves? Given categories C and D, a functor F : C D is:
▶ for each object A ∈ Ob(C), an object F(A) ∈ Ob(D)

▶ for each morphism A f B in C, a morphism F(A) F(f) F(B) in D

such that structure is preserved:
▶ F(g ◦ f) = F(g) ◦ F(f) for morphisms A f B g C in C
▶ F(idA) = idF(A) for objects A in C

It is:
▶ full when f 7→ F(f) are surjections C(A,B) D(F(A), F(B))
▶ faithful when f 7→ F(f) are injections C(A,B) D(F(A), F(B))
▶ essentially surjective on objects each B ∈ Ob(D) is isomorphic to

F(A) for some A ∈ Ob(C)
▶ equivalence when full, faithful, essentially surjective on objects

16 / 24

Natural transformations
Given functors F,G : C D, a natural transformation ζ : F G
assigns to every object A in C of a morphism F(A) ζA G(A) in D,
such that for every morphism A f B in C:

F(A) G(A)

F(B) G(B)

ζA

F(f) G(f)

ζB

If every component ζA is an isomorphism then ζ is called a natural
isomorphism, and F and G are said to be naturally isomorphic.

A functor F : C D is an equivalence if and only if there is a functor
G : D C and natural isomorphisms G ◦ F ≃ idC and F ◦ G ≃ idD.

17 / 24

Natural transformations
Given functors F,G : C D, a natural transformation ζ : F G
assigns to every object A in C of a morphism F(A) ζA G(A) in D,
such that for every morphism A f B in C:

F(A) G(A)

F(B) G(B)

ζA

F(f) G(f)

ζB

If every component ζA is an isomorphism then ζ is called a natural
isomorphism, and F and G are said to be naturally isomorphic.

A functor F : C D is an equivalence if and only if there is a functor
G : D C and natural isomorphisms G ◦ F ≃ idC and F ◦ G ≃ idD.

17 / 24

Products

Given objects A and B, a product is:
▶ an object A × B
▶ morphisms A × B pA A and A × B pB B

such that any two morphisms X f A and X g B allow a unique
morphism

(
f
g

)
: X A × B with pA ◦

(
f
g

)
= f and pB ◦

(
f
g

)
= g

X

A A × B B

f g(f
g
)

pA pB

Universal property: A × B is universal way to put A and B together

18 / 24

Vector spaces
Set V with element 0, functions +: V × V V, and · : C× V V
▶ additive associativity: u + (v + w) = (u + v) + w;
▶ additive commutativity: u + v = v + u;
▶ additive unit: v + 0 = v;
▶ additive inverses: there exists a −v ∈ V such that v + (−v) = 0;
▶ additive distributivity: a · (u + v) = (a · u) + (a · v)
▶ scalar unit: 1 · v = v;
▶ scalar distributivity: (a + b) · v = (a · v) + (b · v);
▶ scalar compatibility: a · (b · v) = (ab) · v.

v

0
w

v + w

Example: Cn

19 / 24

Linear maps

Function f : V W is linear when

f(v + w) = f(v) + f(w)

f(a · v) = a · f(v)

Vector spaces and linear maps form a category Vect

20 / 24

Bases and matrices

▶ Vectors {ei} form basis when any vector v takes the form
v =

∑
i viei for vi ∈ C in precisely one way.

▶ Any vector space has a basis
any two bases have the same cardinality: dimension

▶ Finite-dimensional vector spaces and linear maps
form a category FVect

▶ Given bases {di} and {ej}, linear map V f W gives matrix f(di)j,
and vice versa

▶ There is a category MatC of natural numbers and matrices
There is an equivalence MatC FVect given by n 7→ Cn

21 / 24

Bases and matrices

▶ Vectors {ei} form basis when any vector v takes the form
v =

∑
i viei for vi ∈ C in precisely one way.

▶ Any vector space has a basis
any two bases have the same cardinality: dimension

▶ Finite-dimensional vector spaces and linear maps
form a category FVect

▶ Given bases {di} and {ej}, linear map V f W gives matrix f(di)j,
and vice versa

▶ There is a category MatC of natural numbers and matrices
There is an equivalence MatC FVect given by n 7→ Cn

21 / 24

Hilbert spaces

Vector space H with inner product ⟨−|−⟩ : H × H C such that
▶ conjugate-symmetric: ⟨v|w⟩ = ⟨w|v⟩∗

▶ linear in second argument:
⟨v|a · w⟩ = a · ⟨v|w⟩ and ⟨u|v + w⟩ = ⟨u|v⟩+ ⟨u|w⟩

▶ positive definite: ⟨v|v⟩ ≥ 0 with equality iff v = 0

▶ complete in the norm ∥v∥ =
√
⟨v|v⟩

(if
∑∞

i=1 ∥vi∥ < ∞ then limn ∥v −
∑n

i=1 vi∥ = 0 for some v)

Linear f : H K is bounded when ∥f(v)∥ ≤ ∥f∥ · ∥v∥ for some ∥f∥ ∈ R

Hilbert spaces and bounded linear maps form category Hilb
Finite-dimensional Hilbert spaces form category FHilb

22 / 24

Hilbert spaces

Vector space H with inner product ⟨−|−⟩ : H × H C such that
▶ conjugate-symmetric: ⟨v|w⟩ = ⟨w|v⟩∗

▶ linear in second argument:
⟨v|a · w⟩ = a · ⟨v|w⟩ and ⟨u|v + w⟩ = ⟨u|v⟩+ ⟨u|w⟩

▶ positive definite: ⟨v|v⟩ ≥ 0 with equality iff v = 0

▶ complete in the norm ∥v∥ =
√
⟨v|v⟩

(if
∑∞

i=1 ∥vi∥ < ∞ then limn ∥v −
∑n

i=1 vi∥ = 0 for some v)

Linear f : H K is bounded when ∥f(v)∥ ≤ ∥f∥ · ∥v∥ for some ∥f∥ ∈ R

Hilbert spaces and bounded linear maps form category Hilb
Finite-dimensional Hilbert spaces form category FHilb

22 / 24

Dual space

▶ Basis is orthogonal when ⟨ei |ej⟩ = 0 for i ̸= j;
orthonormal if ⟨ei |ei⟩ = 1

▶ Bounded H f K has adjoint K f† H with ⟨f(v)|w⟩ = ⟨v|f †(w)⟩
(conjugate transpose matrix)

▶ Given v ∈ H, its ket C |v⟩ H is z 7→ zv; bra H ⟨v| C is w 7→ ⟨v|w⟩

▶ Dual Hilbert space H∗ is Hilb(H,C)

23 / 24

Summary

▶ Categories: objects and (more importantly) morphisms
▶ Examples: sets and functions, sets and relations, vector spaces

and linear functions, Hilbert spaces and bounded linear
functions

▶ Isomorphic objects: behave the same
▶ Functors: ‘morphisms between categories’
▶ Equivalent categories: behave the same
▶ Products: combine objects universally

24 / 24

