Introduction to Quantum Programming and Semantics

Week 2: Categories, Hilbert spaces

Chris Heunen

THE UNIVERSITY of EDINBURGH

Categorical semantics

Want:

- Compositionality: $\llbracket \mathrm{F} ; \mathrm{G} \rrbracket=\llbracket \mathrm{G} \rrbracket \circ \llbracket \mathrm{F} \rrbracket$
- Concurrency: $\llbracket \mathrm{F}$ par $\mathrm{G} \rrbracket=\llbracket \mathrm{F} \rrbracket \otimes \llbracket \mathrm{G} \rrbracket$
- Recursion: $\llbracket \mathrm{F}(\mathrm{X}) \rrbracket=\llbracket \mathrm{F} \rrbracket(\llbracket \mathrm{X} \rrbracket)$

Categorical semantics

Want:

- Compositionality: $\llbracket \mathrm{F} ; \mathrm{G} \rrbracket=\llbracket \mathrm{G} \rrbracket \circ \llbracket \mathrm{F} \rrbracket$
- Concurrency: $\llbracket \mathrm{F}$ par $\mathrm{G} \rrbracket=\llbracket \mathrm{F} \rrbracket \otimes \llbracket \mathrm{G} \rrbracket$
- Recursion: $\llbracket \mathrm{F}(\mathrm{X}) \rrbracket=\llbracket \mathrm{F} \rrbracket(\llbracket \mathrm{X} \rrbracket)$

Where can $\llbracket F \rrbracket$ live?

- λ-calculus
- partially ordered sets
- categories

Categorical semantics

Want:

- Compositionality: $\llbracket F ; G \rrbracket=\llbracket G \rrbracket \circ \llbracket F \rrbracket$
- Concurrency: $\llbracket \mathrm{F}$ par $\mathrm{G} \rrbracket=\llbracket \mathrm{F} \rrbracket \otimes \llbracket \mathrm{G} \rrbracket$
- Recursion: $\llbracket \mathrm{F}(\mathrm{X}) \rrbracket=\llbracket \mathrm{F} \rrbracket(\llbracket \mathrm{X} \rrbracket)$

Where can $\llbracket F \rrbracket$ live?

- λ-calculus
- partially ordered sets
- categories

Instantiate in different categories:

- Isolate differences between quantum and classical behaviour
- Apply quantum thinking to other settings

Categories

Category theory is a way of thinking more than deep theorems
"The essential virtue of category theory is as a discipline for making definitions, the programmer's main task in life."

- D. E. Rydeheard
"Good general theory does not search for the maximum generality, but for the right generality."
- S. Mac Lane

Categories

Categories consist of

- objects A, B, C, \ldots
- morphisms $A \xrightarrow{f} B$ going between objects

Categories

Categories consist of

- objects A, B, C, \ldots
- morphisms $A \xrightarrow{f} B$ going between objects

Examples:

- physical systems, physical processes governing them
- data types, algorithms manipulating them
- algebraic/geometric structures, structure-preserving functions
- logical propositions, implications between them

Categories

Categories consist of

- objects A, B, C, \ldots
- morphisms $A \xrightarrow{f} B$ going between objects

Examples:

- physical systems, physical processes governing them
- data types, algorithms manipulating them
- algebraic/geometric structures, structure-preserving functions
- logical propositions, implications between them

Ignore all structure of objects, focus relationships between objects "Morphisms are more important than objects"

Categories

A category \mathbf{C} consists of the following data:

- a collection $\mathrm{Ob}(\mathbf{C})$ of objects
- for every pair of objects A and B, a collection $\mathbf{C}(A, B)$ of morphisms, with $f \in \mathbf{C}(A, B)$ written $A \xrightarrow{f} B$
- for all morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ a composite $A \xrightarrow{g \circ f} C$
- for every object A an identity morphism $A \xrightarrow{\mathrm{id}_{A}} A$
such that:
- associativity: $h \circ(g \circ f)=(h \circ g) \circ f$
- identity: $\operatorname{id}_{B} \circ f=f=f \circ \operatorname{id}_{A}$

Sets and functions

The category Set of sets and functions:

- objects are sets A, B, C, \ldots
- morphisms are functions f, g, h, \ldots
- composition of $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ is the function $g \circ f: a \mapsto g(f(a))$
- the identity morphism on A is the function $\mathrm{id}_{A}: a \mapsto a$

Sets and functions

The category Set of sets and functions:

- objects are sets A, B, C, \ldots
- morphisms are functions f, g, h, \ldots
- composition of $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ is the function $g \circ f: a \mapsto g(f(a))$
- the identity morphism on A is the function $\mathrm{id}_{A}: a \mapsto a$

Think of a function $A \xrightarrow{f} B$ dynamically, as indicating how elements of A can evolve into elements of B

$$
A \xrightarrow{f} B
$$

Relations

Given sets A and B, a relation $A \xrightarrow{R} B$ is a subset $R \subseteq A \times B$.

$$
A \xrightarrow{R} B
$$

Nondeterministic: an element of A can relate to more than one element of B, or to none.

Composition of relations

Suppose we have a pair of head-to-tail relations:

Composition of relations

Suppose we have a pair of head-to-tail relations:

Then our interpretation gives a natural notion of composition:

Relations as matrices

We can write relations as (0,1)-valued matrices:

$$
A \xrightarrow{R} B
$$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Composition of relations is then ordinary matrix multiplication, with logical disjunction (OR) and conjunction (AND) for + and \times.

Sets and relations

The category Rel of sets and relations:

- objects are sets A, B, C, \ldots;
- morphisms are relations $R \subseteq A \times B$, with $(a, b) \in R$ written $a R b$;
- composition $A \xrightarrow{R} B \xrightarrow{S} C$ is $\{(a, c) \in A \times C \mid \exists b \in B: a R b, b S c\}$;
- the identity morphism on A is $\{(a, a) \in A \times A \mid a \in A\}$.

Sets and relations

The category Rel of sets and relations:

- objects are sets A, B, C, \ldots;
- morphisms are relations $R \subseteq A \times B$, with $(a, b) \in R$ written $a R b$;
- composition $A \xrightarrow{R} B \xrightarrow{S} C$ is $\{(a, c) \in A \times C \mid \exists b \in B: a R b, b S c\} ;$
- the identity morphism on A is $\{(a, a) \in A \times A \mid a \in A\}$.

It seems like Rel should be a lot like Set, but we will discover it behaves a lot more like Hilb.

While Set is a setting for classical physics, and Hilb is a setting for quantum physics, Rel is somewhere in the middle.

Diagrams

Helps to draw diagrams, indicating how morphisms compose

Diagram commutes if every path from object to another is equal
Two ways to speak about equality of composite morphisms: algebraic equations, and commuting diagrams.

Terminology

For morphism $A \xrightarrow{f} B$

- A is its domain
- B is its codomain
- f is endomorphism if $A=B$
- f is isomorphism if $f^{-1} \circ f=\operatorname{id}_{A}, f \circ f^{-1}=\operatorname{id}_{B}$ for some $B \xrightarrow{f^{-1}} A$
- A and B are isomorphic $(A \simeq B)$ if there is isomorphism $A \rightarrow B$

Terminology

For morphism $A \xrightarrow{f} B$

- A is its domain
- B is its codomain
- f is endomorphism if $A=B$
- f is isomorphism if $f^{-1} \circ f=\mathrm{id}_{A}, f \circ f^{-1}=\operatorname{id}_{B}$ for some $B \xrightarrow{f^{-1}} A$
- A and B are isomorphic $(A \simeq B)$ if there is isomorphism $A \rightarrow B$

If a morphism has an inverse, it is unique:

$$
g=g \circ \mathrm{id}=g \circ\left(f \circ g^{\prime}\right)=(g \circ f) \circ g^{\prime}=\mathrm{id} \circ g^{\prime}=g^{\prime}
$$

Terminology

For morphism $A \xrightarrow{f} B$

- A is its domain
- B is its codomain
- f is endomorphism if $A=B$
- f is isomorphism if $f^{-1} \circ f=\mathrm{id}_{A}, f \circ f^{-1}=\operatorname{id}_{B}$ for some $B \xrightarrow{f^{-1}} A$
- A and B are isomorphic $(A \simeq B)$ if there is isomorphism $A \rightarrow B$

If a morphism has an inverse, it is unique:

$$
g=g \circ \mathrm{id}=g \circ\left(f \circ g^{\prime}\right)=(g \circ f) \circ g^{\prime}=\mathrm{id} \circ g^{\prime}=g^{\prime}
$$

A groupoid is a category where every morphism is an isomorphism

Graphical notation

Draw object A as:

It's just a line. Think of it as a picture of the identity morphism $A \xrightarrow{\mathrm{id}_{A}} A$. Remember: morphisms are more important than objects.

Graphical notation

Draw object A as:

It's just a line. Think of it as a picture of the identity morphism $A \xrightarrow{\mathrm{id}_{A}} A$. Remember: morphisms are more important than objects. Draw morphism $A \xrightarrow{f} B$ as:

Graphical notation

Draw composition of $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ as:

Graphical notation

Identity law and associativity law become:

Graphical notation

Identity law and associativity law become:

This one-dimensional representation is familiar; we usually draw it horizontally, and call it algebra. The graphical calculus 'absorbs' the axioms of a category.

Functors

Morphisms are more important than objects: what about categories themselves? Given categories \mathbf{C} and \mathbf{D}, a functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is:

- for each object $A \in \mathrm{Ob}(\mathbf{C})$, an object $F(A) \in \mathrm{Ob}(\mathbf{D})$
- for each morphism $A \xrightarrow{f} B$ in \mathbf{C}, a morphism $F(A) \xrightarrow{F(f)} F(B)$ in \mathbf{D} such that structure is preserved:
- $F(g \circ f)=F(g) \circ F(f)$ for morphisms $A \xrightarrow{f} B \xrightarrow{g} C$ in C
- $F\left(\mathrm{id}_{A}\right)=\mathrm{id}_{F(A)}$ for objects A in C

Functors

Morphisms are more important than objects: what about categories themselves? Given categories \mathbf{C} and \mathbf{D}, a functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is:

- for each object $A \in \mathrm{Ob}(\mathbf{C})$, an object $F(A) \in \mathrm{Ob}(\mathbf{D})$
- for each morphism $A \xrightarrow{f} B$ in \mathbf{C}, a morphism $F(A) \xrightarrow{F(f)} F(B)$ in \mathbf{D} such that structure is preserved:
- $F(g \circ f)=F(g) \circ F(f)$ for morphisms $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathbf{C}
$-F\left(\mathrm{id}_{A}\right)=\mathrm{id}_{F(A)}$ for objects A in \mathbf{C}
It is:
- full when $f \mapsto F(f)$ are surjections $\mathbf{C}(A, B) \rightarrow \mathbf{D}(F(A), F(B))$
- faithful when $f \mapsto F(f)$ are injections $\mathbf{C}(A, B) \rightarrow \mathbf{D}(F(A), F(B))$
- essentially surjective on objects each $B \in \mathrm{Ob}(\mathbf{D})$ is isomorphic to $F(A)$ for some $A \in \mathrm{Ob}(\mathbf{C})$
- equivalence when full, faithful, essentially surjective on objects

Natural transformations

Given functors $F, G: \mathbf{C} \rightarrow \mathbf{D}$, a natural transformation $\zeta: F \Longrightarrow G$ assigns to every object A in \mathbf{C} of a morphism $F(A) \xrightarrow{\zeta_{A}} G(A)$ in \mathbf{D}, such that for every morphism $A \xrightarrow{f} B$ in \mathbf{C} :

If every component ζ_{A} is an isomorphism then ζ is called a natural isomorphism, and F and G are said to be naturally isomorphic.

Natural transformations

Given functors $F, G: \mathbf{C} \rightarrow \mathbf{D}$, a natural transformation $\zeta: F \Longrightarrow G$ assigns to every object A in \mathbf{C} of a morphism $F(A) \xrightarrow{\zeta_{A}} G(A)$ in \mathbf{D}, such that for every morphism $A \xrightarrow{f} B$ in C :

If every component ζ_{A} is an isomorphism then ζ is called a natural isomorphism, and F and G are said to be naturally isomorphic.

A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is an equivalence if and only if there is a functor $G: \mathbf{D} \rightarrow \mathbf{C}$ and natural isomorphisms $G \circ F \simeq \mathrm{id}_{\mathbf{C}}$ and $F \circ G \simeq \mathrm{id}_{\mathbf{D}}$.

Products

Given objects A and B, a product is:

- an object $A \times B$
- morphisms $A \times B \xrightarrow{p_{A}} A$ and $A \times B \xrightarrow{p_{B}} B$
such that any two morphisms $X \xrightarrow{f} A$ and $X \xrightarrow{g} B$ allow a unique morphism $\binom{f}{g}: X \rightarrow A \times B$ with $p_{A} \circ\binom{f}{g}=f$ and $p_{B} \circ\binom{f}{g}=g$

Universal property: $A \times B$ is universal way to put A and B together

Vector spaces

Set V with element 0 , functions $+: V \times V \rightarrow V$, and $\cdot: \mathbb{C} \times V \rightarrow V$

- additive associativity: $u+(v+w)=(u+v)+w$;
- additive commutativity: $u+v=v+u$;
- additive unit: $v+0=v$;
- additive inverses: there exists a $-v \in V$ such that $v+(-v)=0$;
- additive distributivity: $a \cdot(u+v)=(a \cdot u)+(a \cdot v)$
- scalar unit: $1 \cdot v=v$;
- scalar distributivity: $(a+b) \cdot v=(a \cdot v)+(b \cdot v)$;
- scalar compatibility: $a \cdot(b \cdot v)=(a b) \cdot v$.

Example: \mathbb{C}^{n}

Linear maps

Function $f: V \rightarrow W$ is linear when

$$
\begin{aligned}
f(v+w) & =f(v)+f(w) \\
f(a \cdot v) & =a \cdot f(v)
\end{aligned}
$$

Vector spaces and linear maps form a category Vect

Bases and matrices

- Vectors $\left\{e_{i}\right\}$ form basis when any vector v takes the form $v=\sum_{i} v_{i} e_{i}$ for $v_{i} \in \mathbb{C}$ in precisely one way.
- Any vector space has a basis any two bases have the same cardinality: dimension
- Finite-dimensional vector spaces and linear maps form a category FVect

Bases and matrices

- Vectors $\left\{e_{i}\right\}$ form basis when any vector v takes the form $v=\sum_{i} v_{i} e_{i}$ for $v_{i} \in \mathbb{C}$ in precisely one way.
- Any vector space has a basis any two bases have the same cardinality: dimension
- Finite-dimensional vector spaces and linear maps form a category FVect
- Given bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$, linear map $V \xrightarrow{f} W$ gives matrix $f\left(d_{i}\right)_{j}$, and vice versa
- There is a category Mat $_{\mathbb{C}}$ of natural numbers and matrices There is an equivalence Mat $\mathbb{C} \rightarrow$ FVect given by $n \mapsto \mathbb{C}^{n}$

Hilbert spaces

Vector space H with inner product $\langle-\mid-\rangle: H \times H \rightarrow \mathbb{C}$ such that

- conjugate-symmetric: $\langle v \mid w\rangle=\langle w \mid v\rangle^{*}$
- linear in second argument:

$$
\langle v \mid a \cdot w\rangle=a \cdot\langle v \mid w\rangle \text { and }\langle u \mid v+w\rangle=\langle u \mid v\rangle+\langle u \mid w\rangle
$$

- positive definite: $\langle v \mid v\rangle \geq 0$ with equality iff $v=0$
- complete in the norm $\|v\|=\sqrt{\langle v \mid v\rangle}$ (if $\sum_{i=1}^{\infty}\left\|v_{i}\right\|<\infty$ then $\lim _{n}\left\|v-\sum_{i=1}^{n} v_{i}\right\|=0$ for some v)

Hilbert spaces

Vector space H with inner product $\langle-\mid-\rangle: H \times H \rightarrow \mathbb{C}$ such that

- conjugate-symmetric: $\langle v \mid w\rangle=\langle w \mid v\rangle^{*}$
- linear in second argument:

$$
\langle v \mid a \cdot w\rangle=a \cdot\langle v \mid w\rangle \text { and }\langle u \mid v+w\rangle=\langle u \mid v\rangle+\langle u \mid w\rangle
$$

- positive definite: $\langle v \mid v\rangle \geq 0$ with equality iff $v=0$
- complete in the norm $\|v\|=\sqrt{\langle v \mid v\rangle}$ (if $\sum_{i=1}^{\infty}\left\|v_{i}\right\|<\infty$ then $\lim _{n}\left\|v-\sum_{i=1}^{n} v_{i}\right\|=0$ for some v)

Linear $f: H \rightarrow K$ is bounded when $\|f(v)\| \leq\|f\| \cdot\|v\|$ for some $\|f\| \in \mathbb{R}$
Hilbert spaces and bounded linear maps form category Hilb Finite-dimensional Hilbert spaces form category FHilb

Dual space

- Basis is orthogonal when $\left\langle e_{i} \mid e_{j}\right\rangle=0$ for $i \neq j$; orthonormal if $\left\langle e_{i} \mid e_{i}\right\rangle=1$
- Bounded $H \xrightarrow{f} K$ has adjoint $K \xrightarrow{f^{\dagger}} H$ with $\langle f(v) \mid w\rangle=\left\langle v \mid f^{\dagger}(w)\right\rangle$ (conjugate transpose matrix)
- Given $v \in H$, its ket $\mathbb{C} \xrightarrow{|v\rangle} H$ is $z \mapsto z v$; bra $H \xrightarrow{\langle v|} \mathbb{C}$ is $w \mapsto\langle v \mid w\rangle$
- Dual Hilbert space H^{*} is $\operatorname{Hilb}(H, \mathbb{C})$

Summary

- Categories: objects and (more importantly) morphisms
- Examples: sets and functions, sets and relations, vector spaces and linear functions, Hilbert spaces and bounded linear functions
- Isomorphic objects: behave the same
- Functors: 'morphisms between categories'
- Equivalent categories: behave the same
- Products: combine objects universally

