Introduction to Quantum Programming and Semantics

Week 9: Complementarity

Chris Heunen

Overview

- ▶ Incompatible Frobenius structures: mutually unbiased bases
- ▶ Deutsch–Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- ▶ Qubit gates: quantum circuits

Idea

▶ Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.

Idea

- ▶ Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.
- ► First measurement provides no information about second: Heisenberg's *uncertainty principle*.

Idea

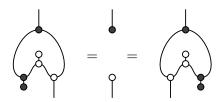
- ▶ Measure qubit in basis $\{\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}\}$, then in $\{\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}\}$: probability of either outcome 1/2.
- ► First measurement provides no information about second: Heisenberg's *uncertainty principle*.
- ▶ Orthogonal bases $\{a_i\}$ and $\{b_j\}$ are complementary/unbiased if

$$\langle a_i|b_j\rangle\langle b_j|a_i\rangle=c$$

for some $c \in \mathbb{C}$.

Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures A and A on the same object are complementary if:



Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius structures ♠ and ♠ on the same object are complementary if:

Black and white not obviously interchangeable. But by symmetry:

So could have added two more equalities.

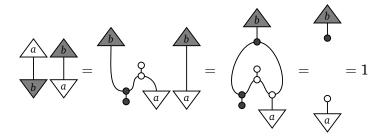
Complementarity in FHilb

Commutative dagger Frobenius structures in **FHilb** complementary if and only if they copy complementary bases (with c = 1).

Complementarity in FHilb

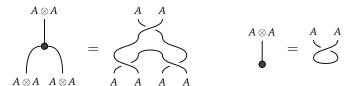
Commutative dagger Frobenius structures in **FHilb** complementary if and only if they copy complementary bases (with c = 1).

Proof. For all *a* in white basis, and *b* in black basis:



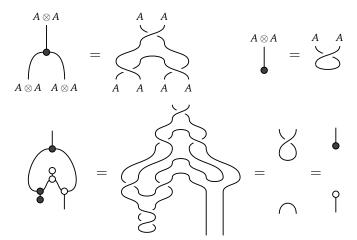
Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:



Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius structure on $A \otimes A$ is complementary to pair of pants:



So Frobenius structure on *A* gives complementary pair on $A \otimes A$.

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

Largest family of complementary bases for \mathbb{C}^2 : no four bases all mutually unbiased.

Pauli basis

Three mutually complementary bases of \mathbb{C}^2 :

$$X \text{ basis} \qquad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$

$$Y \text{ basis} \qquad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix} \right\}$$

$$Z \text{ basis} \qquad \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

- Largest family of complementary bases for \mathbb{C}^2 : no four bases all mutually unbiased.
- What is the maximum number of mutually complementary bases in a given dimension? Only known for prime power dimensions p^n .

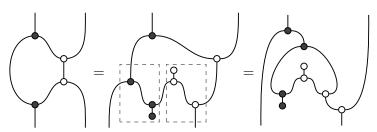
Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category are complementary if and only if the following is unitary:

Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category are complementary if and only if the following is unitary:

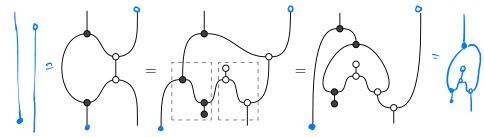
Proof. Compose with adjoint:



Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger category are complementary if and only if the following is unitary:

Proof. Compose with adjoint:



Conversely, if is identity, compose with white counit on top right, black unit on bottom left, to get complementarity.

Complementarity in Rel

If *G*, *H* are nontrivial groups, these are complementary groupoids:

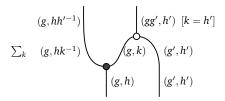
- ▶ objects $g \in G$, morphisms $g \xrightarrow{(g,h)} g$, with $(g,h') \bullet (g,h) = (g,hh')$
- ▶ objects $h \in H$, morphisms $h \xrightarrow{(g,h)} h$, with $(g',h) \circ (g,h) = (gg',h)$

Complementarity in **Rel**

If *G*, *H* are nontrivial groups, these are complementary groupoids:

- ▶ objects $g \in G$, morphisms $g \xrightarrow{(g,h)} g$, with $(g,h') \bullet (g,h) = (g,hh')$ ▶ objects $h \in H$, morphisms $h \xrightarrow{(g,h)} h$, with $(g',h) \circ (g,h) = (gg',h)$

Proof.



Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has number of outgoing morphisms.

Solves certain problem faster than possible classically

- Typical exact quantum decision algorithm (no approximation)
- ▶ Problem artificial, but other important algorithms very similar:
 - ► Shor's factoring algorithm
 - Grover's search algorithm
 - the hidden subgroup problem
- 'All or nothing' nature makes it categorical

Problem:

- ▶ Given 2-valued function $A \xrightarrow{f} \{0, 1\}$ on a finite set A.
- ightharpoonup Constant if takes just a single value on every element of A.
- ▶ Balanced if takes value 0 on exactly half the elements of *A*.
- ➤ You are promised that *f* is either constant or balanced. You must decide which.

Problem:

- ▶ Given 2-valued function $A \xrightarrow{f} \{0, 1\}$ on a finite set A.
- ightharpoonup Constant if takes just a single value on every element of A.
- ▶ Balanced if takes value 0 on exactly half the elements of *A*.
- You are promised that *f* is either constant or balanced. You must decide which.

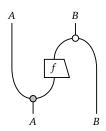
Best classical strategy:

Sample f on $\frac{1}{2}|A| + 1$ elements of A. If different values then balanced, otherwise constant.

Quantum Deutsch-Jozsa uses *f* only *once*! How to access *f*? Can only apply unitary operators...

Quantum Deutsch-Jozsa uses f only *once*! How to access f? Can only apply unitary operators... Must embed $A \xrightarrow{f} \{0,1\}$ into an *oracle*.

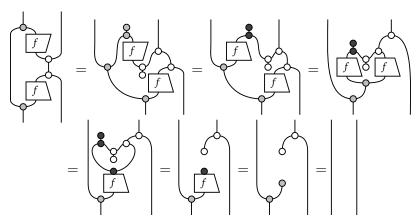
Given Frobenius structures (A, \diamondsuit, b) and (B, \diamondsuit, b) in monoidal dagger category, oracle is morphism $A \xrightarrow{f} B$ making the following unitary:



Where to find oracles

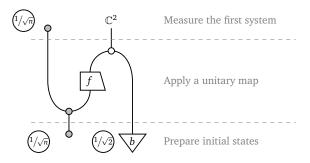
Let (A, \spadesuit) , (B, \spadesuit) and (B, \spadesuit) be symmetric dagger Frobenius. If (A, \spadesuit) complementary, self-conjugate comonoid homomorphism $(A, \spadesuit) \xrightarrow{f} (B, \spadesuit)$ is oracle.

Proof.



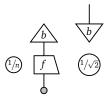
Let $A \xrightarrow{f} \{0,1\}$ be given function, and |A| = n. Choose complementary bases $\emptyset = \mathbb{C}^2$, $O = \mathbb{C}[\mathbb{Z}_2]$. Let $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, a copyable state of O.

The Deutsch–Jozsa algorithm is this morphism:



Deutsch-Jozsa simplifies

The Deutsch–Jozsa algorithm simplifies to:



Proof. Duplicate copyable state *b* through white dot, and apply noncommutative spider theorem to cluster of gray dots.

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

Deutsch-Jozsa correctness: constant

If $A \xrightarrow{f} \{0, 1\}$ is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all $a \in A$, oracle $H \xrightarrow{f} \mathbb{C}^2$ decomposes as:

So history is:

This has norm 1, so the history is certain.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible.

Proof. The function *f* is balanced just when the following holds:

Recall
$$b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Deutsch-Jozsa correctness:balanced

If $A \xrightarrow{f} \{0, 1\}$ is balanced, the Deutsch–Jozsa history is impossible.

Proof. The function *f* is balanced just when the following holds:

Recall $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Hence the final history equals 0.

Bialgebras

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

Bialgebras

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space with basis $\{g \in G\}$, with

$$\forall g \mapsto g \otimes g$$

$$\varphi \colon g \mapsto 1$$

$$\bigstar$$
: $g \otimes h \mapsto gh$

Bialgebras

Complementary classical structures in **FHilb** are mutually unbiased bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space with basis $\{g \in G\}$, with

$$\begin{array}{ll} \forall \colon g \mapsto g \otimes g & \qquad \qquad \varphi \colon g \mapsto 1 \\ \spadesuit \colon g \otimes h \mapsto gh & \qquad \qquad \bullet \colon 1 \mapsto \sum_{g \in G} g \end{array}$$

Some nice relationships emerge between ∀ and ♠.

Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid (A, , , , ,) and a comonoid (A, , , ,) satisfying:

Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid (A, , , , ,) and a comonoid (A, , , ,) satisfying:

Example: monoid *M* is a bialgebra in **Set** and hence in **Rel** and **FHilb**

$$\forall : m \mapsto (m, m)$$
 $\varphi : m \mapsto \bullet$ $(m, n) \mapsto mn$ $\bullet : \bullet \mapsto 1_M$.

Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, , , ,) and comonoid (A, , , ,) form a Frobenius structure and a bialgebra, then $A \simeq I$.

Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A, , ,) and comonoid (A, , ,) form a Frobenius structure and a bialgebra, then $A \simeq I$.

Proof. Will show ϕ and φ are inverses. The bialgebra laws already require $\varphi \circ \phi = \mathrm{id}_I$. For the other composite:

Copyable states

In a braided monoidal category if \wedge and \forall form a bialgebra, then copyable states for \forall are a monoid under \wedge .

Copyable states

In a braided monoidal category if \wedge and \forall form a bialgebra, then copyable states for \forall are a monoid under \wedge .

Proof. Associativity is immediate. Unitality comes down to third bialgebra law: \bullet is copyable for \heartsuit . Have to prove well-definedness. Let a and b be copyable states for \heartsuit .

Hence \(\varphi\)-copyable states are indeed closed under \(\lambda\).

Strong complementarity

▶ Consider \mathbb{C}^2 in **FHilb**. Computational basis $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ gives dagger Frobenius structure. Orthogonal basis $\{\begin{pmatrix} e^{i\varphi} \\ e^{i\theta} \end{pmatrix}, \begin{pmatrix} e^{i\varphi} \\ -e^{i\theta} \end{pmatrix}\}$ gives dagger Frobenius structure. Complementary, but only a bialgebra if $\varphi = \theta = 0$.

Strong complementarity

- ▶ Consider \mathbb{C}^2 in **FHilb**. Computational basis $\{\binom{0}{0}, \binom{0}{1}\}$ gives dagger Frobenius structure. Orthogonal basis $\{\binom{e^{i\varphi}}{e^{i\theta}}, \binom{e^{i\varphi}}{-e^{i\theta}}\}$ gives dagger Frobenius structure. Complementary, but only a bialgebra if $\varphi = \theta = 0$.
- ► In a braided monoidal dagger category, two dagger symmetric Frobenius structures are strongly complementary when they are complementary, and also form a bialgebra.

Strong complementarity in FHilb

In **FHilb**, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.

Strong complementarity in FHilb

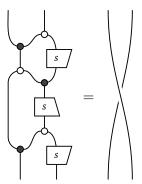
In **FHilb**, strongly complementary symmetric dagger Frobenius structures, one of which is commutative, correspond to finite groups.

Proof.

- Given strongly complementary symmetric dagger Frobenius structures, the states that are self-conjugate, copyable and deletable for (φ', φ) form a group under.
- ▶ By the classification theorem for commutative dagger Frobenius structures, there is an entire basis of such states for ♥.

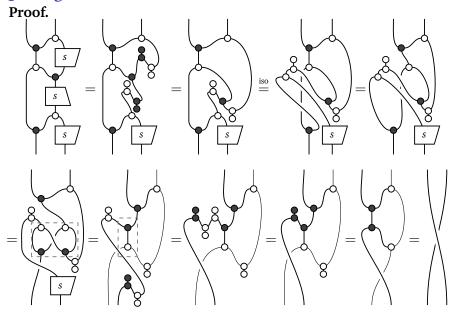
Qubit gates

In a braided monoidal dagger category, let (\spadesuit, \bullet) and (\heartsuit', \circ) be complementary classical structures with antipode s. Then the first bialgebra law holds if and only if:



where
$$s =$$

Qubit gates



Qubit gates in FHilb

Fix A to be qubit \mathbb{C}^2 ; let (\clubsuit, \clubsuit) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\heartsuit, \lozenge) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Qubit gates in FHilb

Fix A to be qubit \mathbb{C}^2 ; let (\spadesuit, \bullet) copy computational basis $\{|0\rangle, |1\rangle\}$, and (\heartsuit, \lozenge) copy the X basis. The three antipodes s become identities.

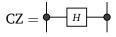
The three unitaries reduce to three CNOT gates:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

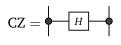
These two classical structures are transported into each other by Hadamard gate:

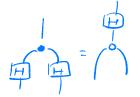
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \boxed{\begin{matrix} H \end{matrix}}$$

The CZ gate in **FHilb** can be defined as follows.



The CZ gate in **FHilb** can be defined as follows.





Proof. Rewrite as:

$$CZ = \begin{pmatrix} H \\ H \end{pmatrix}$$

$$= \begin{pmatrix} H \\ H \end{pmatrix}$$

$$= \begin{pmatrix} H \\ H \end{pmatrix}$$

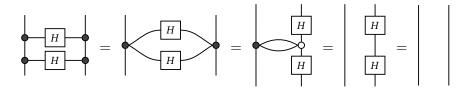
Hence

$$CZ = (id \otimes H) \circ CNOT \circ (id \otimes H) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

If (A, \blacktriangleleft) and (A, \image) complementary classical structures in braided monoidal dagger category, and $A \xrightarrow{H} A$ satisfies $H \circ H = \mathrm{id}_A$, then CZ makes sense and satisfies $CZ \circ CZ = \mathrm{id}$.

If (A, \blacktriangleleft) and (A, \curlyvee) complementary classical structures in braided monoidal dagger category, and $A \xrightarrow{H} A$ satisfies $H \circ H = \mathrm{id}_A$, then CZ makes sense and satisfies $CZ \circ CZ = \mathrm{id}$.

Proof.



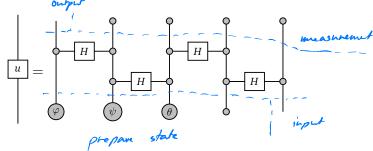
Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary $\mathbb{C}^2 \xrightarrow{u} \mathbb{C}^2$ allows phases φ, ψ, θ with $u = Z_{\varphi} \circ X_{\psi} \circ Z_{\theta}$, where Z_{θ} is rotation in Z basis over angle θ , and X_{φ} in X basis over angle φ .

Measurement-based computing

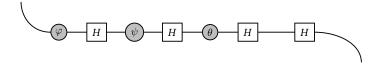
Single-qubit unitaries can be implemented via Euler angles: unitary $\mathbb{C}^2 \xrightarrow{u} \mathbb{C}^2$ allows phases φ, ψ, θ with $u = Z_{\varphi} \circ X_{\psi} \circ Z_{\theta}$, where Z_{θ} is rotation in Z basis over angle θ , and X_{φ} in X basis over angle φ .

If unitary $\mathbb{C}^2 \stackrel{u}{\to} \mathbb{C}^2$ in **FHilb** has Euler angles φ, ψ, θ , then:

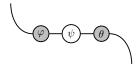


Measurement-based computing

Proof. Use phased spider theorem to reduce to:



But by transport lemma, this is just:



which equals u, by definition of the Euler angles.

Summary

- ▶ Incompatible Frobenius structures: mutually unbiased bases
- ▶ Deutsch-Jozsa algorithm: prototypical use of complementarity
- Quantum groups: strong complementarity
- ▶ Qubit gates: use in quantum circuits