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Overview

» Incompatible Frobenius structures: mutually unbiased bases
» Deutsch—Jozsa algorithm: prototypical use of complementarity
» Quantum groups: strong complementarity

» Qubit gates: quantum circuits
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Idea

> Measure qubit in basis {(§), (9)}, then in {% (1), 55 (1)
probability of either outcome 1/2.
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» First measurement provides no information about second:
Heisenberg’s uncertainty principle.
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Idea

> Measure qubit in basis {(§), (9)}, then in {% (1), 55 (1)
probability of either outcome 1/2.

» First measurement provides no information about second:
Heisenberg’s uncertainty principle.

» Orthogonal bases {qa;} and {b;} are complementary/unbiased if
(ai[bj)(bjlai) = ¢

for some ¢ € C.
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Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius
structures, é, and 4, on the same object are complementary if:

.
T
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Complementarity

In braided monoidal dagger category, symmetric dagger Frobenius
structures, é, and 4, on the same object are complementary if:

O 6

Black and white not obviously interchangeable. But by symmetry:

3

So could have added two more equalities.
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Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if
and only if they copy complementary bases (with ¢ = 1).
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Complementarity in FHilb

Commutative dagger Frobenius structures in FHilb complementary if
and only if they copy complementary bases (with ¢ = 1).

Proof. For all a in white basis, and b in black basis:
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Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius
structure on A ® A is complementary to pair of pants:

ARA A A
N
A®A A A
- /X
ARA ARA A A A A
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Twisted knickers

In compact dagger category, if A is self-dual, the following Frobenius
structure on A ® A is complementary to pair of pants:

ARA A A
N
A®A A A
- /X
ARA ARA A A A A

R w

So Frobenius structure on A gives complementary pair on A ® A.
6/31



Pauli basis

Three mutually complementary bases of C2:

xouss (1) (1))
s {351 550}
avss{(0)-(3)

N

N
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Pauli basis

Three mutually complementary bases of C2:

xoass {L(1) 2 (1))
roass {2 (1) 2(1)]
s {(2). ()}

» Largest family of complementary bases for C?:
no four bases all mutually unbiased.
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Pauli basis

Three mutually complementary bases of C2:

xoass {L(1) 2 (1))
roass {2 (1) 2(1)]
s {(2). ()}

» Largest family of complementary bases for C?:
no four bases all mutually unbiased.

» What is the maximum number of mutually complementary
bases in a given dimension? Only known for prime power
dimensions p".
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Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger
category are complementary if and only if the following is unitary:
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Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger
category are complementary if and only if the following is unitary:

Proof. Compose with adjoint:

| SR % [ S )
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Characterisation

Symmetric dagger Frobenius structures in braided monoidal dagger
category are complementary if and only if the following is unitary:

Proof. Compose with adjoint:

\3

| SR % [ S )

Conversely, if is identity, compose with white counit on top right,

black unit on bottom left, to get complementarity.
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Complementarity in Rel
If G, H are nontrivial groups, these are complementary groupoids:

» objects g € G, morphisms g Mg, with (g, h’) e (g,h) = (g, hh')
» objects h € H, morphisms h {eh), h, with (g, h) o (g,h) = (gg’, h)
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Complementarity in Rel

If G, H are nontrivial groups, these are complementary groupoids:
» objects g € G, morphisms g Mg, with (g, h’) e (g,h) = (g, hh')
» objects h € H, morphisms h {eh), h, with (g, h) o (g,h) = (gg’, h)
Proof.

(&' h)

Every input related to unique output, so unitary.

Groupoid allows complementary one just when every object has
number of outgoing morphisms.
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The Deutsch-Jozsa algorithm

Solves certain problem faster than possible classically

» Typical exact quantum decision algorithm (no approximation)

» Problem artificial, but other important algorithms very similar:

» Shor’s factoring algorithm
» Grover’s search algorithm
» the hidden subgroup problem

» ‘All or nothing’ nature makes it categorical
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The Deutsch-Jozsa algorithm

Problem:

> Given 2-valued function A %> {0,1} on a finite set A.
> Constant if takes just a single value on every element of A.
» Balanced if takes value O on exactly half the elements of A.

» You are promised that f is either constant or balanced.
You must decide which.
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The Deutsch-Jozsa algorithm

Problem:

> Given 2-valued function A %> {0,1} on a finite set A.
> Constant if takes just a single value on every element of A.
» Balanced if takes value O on exactly half the elements of A.

» You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

> Sample f on 3|A| + 1 elements of A.
If different values then balanced, otherwise constant.
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The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...
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The Deutsch-Jozsa algorithm

Quantum Deutsch-Jozsa uses f only once!
How to access f? Can only apply unitary operators...
Must embed A £> {0,1} into an oracle.

Given Frobenius structures (A, 4) and (B,4, ¢) in monoidal dagger
category, oracle is morphism A <+ B making the following unitary:
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Where to find oracles

Let (A,s,), (B,4) and (B,,) be symmetric dagger Frobenius.

If 6, &4 complementary, self-conjugate comonoid homomorphism
(A8) £, (B,4,) is oracle.

Proof.
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The Deutsch-Jozsa algorithm

Let AL {0,1} be given function, and |A| = n.
Choose complementary bases © = C2, 0 = C[Z,].
Let b = (), a copyable state of O.

The Deutsch—Jozsa algorithm is this morphism:

@ C? Measure the first system

Apply a unitary map

Prepare initial states
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Deutsch-Jozsa simplifies

The Deutsch—Jozsa algorithm simplifies to:

N

@ [\ @

Proof. Duplicate copyable state b through white dot, and apply
noncommutative spider theorem to cluster of gray dots.
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Deutsch-Jozsa correctness: constant
ifALs {0, 1} is constant, the Deutsch-Jozsa history is certain.
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Deutsch-Jozsa correctness: constant

ifALs {0, 1} is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all a € A, oracle H L2 decomposes as:

b
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Deutsch-Jozsa correctness: constant
ifALs {0, 1} is constant, the Deutsch-Jozsa history is certain.

Proof. If f(a) = x for all a € A, oracle H L2 decomposes as:

) ?
So history is:

$5- 8508

This has norm 1, so the history is certain.
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Deutsch-Jozsa correctness:balanced

ifAL {0, 1} is balanced, the Deutsch-Jozsa history is impossible.
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Deutsch-Jozsa correctness:balanced

ifAL {0, 1} is balanced, the Deutsch-Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

Recall b = ( 1;).
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Deutsch-Jozsa correctness:balanced

ifAL {0, 1} is balanced, the Deutsch-Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

Recall b = ( ;). Hence the final history equals 0.

17/31



Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?
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Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g € G}, with

Vig—rg®eg e: g1

A gh— gh 6:1»—>Zg
g€G
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Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g € G}, with

Vig—rg®eg e: g1
A gh— gh 6:1»—>Zg
geiG

Some nice relationships emerge between'¢’ and ..
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Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid
(A, é) and a comonoid (A, ¢) satisfying:

L9 Ay T
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Bialgebras

In a braided monoidal category, a bialgebra consists of a monoid
(A, é) and a comonoid (A, ¢) satisfying:

L9 Ay T

Example: monoid M is a bialgebra in Set and hence in Rel and FHilb

V:me— (mym) e:m—e  &:(mn)—mn  é: e Iy
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Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A,#,,é) and comonoid
(A¢’,9) form a Frobenius structure and a bialgebra, then A ~ I.
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Frobenius hates bialgebras

In a braided monoidal category, if a monoid (A,#,,é) and comonoid
(A,9’,9) form a Frobenius structure and a bialgebra, then A ~ I.

Proof. Will show é and ¢ are inverses. The bialgebra laws already
require ¢ o é = id;. For the other composite:

l

)
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Copyable states

In a braided monoidal category if 4, and'¢’ form a bialgebra, then
copyable states for'¢’ are a monoid under ..
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Copyable states

In a braided monoidal category if 4, and'¢’ form a bialgebra, then
copyable states for'¢’ are a monoid under ..

Proof. Associativity is immediate. Unitality comes down to third
bialgebra law: é is copyable for'¢’. Have to prove well-definedness.
Let a and b be copyable states for'y’.

A

Hence'y-copyable states are indeed closed under 4.
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Strong complementarity

> Consider C? in FHilb. Computational basis {(§), (9)} gives
dagger Frobenius structure 4. Orthogonal basis { (ZTZ ) , ( fiefg > }

gives dagger Frobenius structure4,. Complementary, but only a
bialgebra if p = 6§ = 0.
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Strong complementarity

> Consider C? in FHilb. Computational basis {(§), (9)} gives
dagger Frobenius structure 4. Orthogonal basis { (ZTZ ) , ( fiefg > }
gives dagger Frobenius structure4,. Complementary, but only a
bialgebra if p = 6§ = 0.

» In a braided monoidal dagger category, two dagger symmetric
Frobenius structures are strongly complementary when they are
complementary, and also form a bialgebra.
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Strong complementarity in FHilb

In FHilb, strongly complementary symmetric dagger Frobenius
structures, one of which is commutative, correspond to finite groups.
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Strong complementarity in FHilb

In FHilb, strongly complementary symmetric dagger Frobenius
structures, one of which is commutative, correspond to finite groups.
Proof.

» Given strongly complementary symmetric dagger Frobenius
structures, the states that are self-conjugate, copyable and
deletable for (¢/,¢) form a group under 4.

» By the classification theorem for commutative dagger Frobenius
structures, there is an entire basis of such states for'\s’.
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éfv c!l=a

a ::L’-

‘_‘:c/-
refurn (&

Qo=

4:o



Qubit gates

In a braided monoidal dagger category, let (¢, é) and (¢,¢) be
complementary classical structures with antipode s. Then the first
bialgebra law holds if and only if:

where s =
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Qubit gates in FHilb

Fix A to be qubit C?; let (é,, ) copy computational basis {|0), [1)},
and (¢/,¢) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

CNOT =

SO O
[cNeN el
= O O O
o = O O
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Qubit gates in FHilb

Fix A to be qubit C?; let (é,, ) copy computational basis {|0), [1)},
and (¢/,¢) copy the X basis. The three antipodes s become identities.

The three unitaries reduce to three CNOT gates:

1 00O
01 00O
CNOT = 0 001
0 010

These two classical structures are transported into each other by

Hadamard gate:
1 /1 1
= — =|H
H= 50 ) *.

26/31



Controlled Z
The CZ gate in FHilb can be defined as follows.

cz:
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Controlled Z
The CZ gate in FHilb can be defined as follows.

R
cz- 474 qggg/ﬁ

,/;wmmd homo ‘h —"(‘)

Proof. Rewrite as:

CZ = Q
@ f‘
Hence
1 00 O
. . 01 0 O
= (id ® H) oCNOT o (id ® H) = 001 0
0 0 0 -1
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Controlled Z

If (A,4,) and (A,¢’) complementary classical structures in braided
monoidal dagger category, and A -2+ A satisfies H o H = id,, then CZ
makes sense and satisfies CZ o CZ = id.
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Controlled Z

If (A,4,) and (A,¢’) complementary classical structures in braided
monoidal dagger category, and A -2+ A satisfies H o H = id,, then CZ
makes sense and satisfies CZ o CZ = id.

Proof.
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Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary
C? 4 C? allows phases ¢, v, 0 with u = Z,, 0 X, 0 Zp, where Zy is
rotation in Z basis over angle ¢, and X, in X basis over angle .
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Measurement-based computing

Single-qubit unitaries can be implemented via Euler angles: unitary
C? 4 C? allows phases ¢, v, 0 with u = Z,, 0 X, 0 Zp, where Zy is
rotation in Z basis over angle ¢, and X, in X basis over angle .

If unitary C? % C? in FHilb has Euler angles ¢, v, 6, then:

okt
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Measurement-based computing

Proof. Use phased spider theorem to reduce to:

But by transport lemma, this is just:

which equals u, by definition of the Euler angles.
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Summary

» Incompatible Frobenius structures: mutually unbiased bases
» Deutsch-Jozsa algorithm: prototypical use of complementarity
» Quantum groups: strong complementarity

» Qubit gates: use in quantum circuits

31/31



