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Dual objects
Idea:
» Quantum mechanically: maximally entangled states
» Graphically: bending wires
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Dual objects
Idea:

» Quantum mechanically: maximally entangled states
» Graphically: bending wires

An object L is left-dual to an object R, and R is right-dual to L,
written L 4 R, when there is a unit morphism I >R ® L and a counit
morphism L ® R % I such that:
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Snake equations
Draw an object L as a wire with an upward-pointing arrow,
and a right dual R as a wire with a downward-pointing arrow.

+ +

L R
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Snake equations
Draw an object L as a wire with an upward-pointing arrow,
and a right dual R as a wire with a downward-pointing arrow.

+ r=1

L R g?

The unit I - R ® L and counit L ® R -5» I are drawn as bent wires:

U £

Duality equations become:

Also called the snake equations.
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Dual Hilbert spaces

FHilb has all duals: any finite-dimensional Hilbert space H is both
right and left dual to its dual Hilbert space H*, in a canonical way.
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Dual Hilbert spaces

FHilb has all duals: any finite-dimensional Hilbert space H is both
right and left dual to its dual Hilbert space H*, in a canonical way.

The counit H @ H* = C is:

|6) & (Y] = (P]e)

The unit C - H* ® H is defined like so, for any orthonormal basis |i):

1Y (i@ i)

5/38



Dual Hilbert spaces

FHilb has all duals: any finite-dimensional Hilbert space H is both
right and left dual to its dual Hilbert space H*, in a canonical way.

The counit H @ H* = C is:

|6) & (Y] = (P]e)

The unit C - H* ® H is defined like so, for any orthonormal basis |i):
1Y (i@ i)
i

Is 1 basis-dependent, but £ not? No. (Will prove shortly.)
Infinite-dimensional spaces do not have duals. (Will prove later.)
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Dual matrices

In Matc, every object n is its own dual, with a canonical choice of 7
and ¢ given as follows:

n:1e > )i e i) ® [j) = 651
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Dual relations

In Rel, every object is its own dual, even infinite sets.

Unit 1 -5 S x S and counit S x S 5> 1 are:

o~y (s,s) forallse S
(s,s) ~- e forallse S
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Names and conames

Set only has duals for singleton sets.
Let AL Bbea morphism in a monoidal category with dualities
A4 A* and B 4 B*. Its name [ -~ A* ® B and coname A ® B* 2= I are:
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Names and conames

Set only has duals for singleton sets.
Let AL Bbea morphism in a monoidal category with dualities
A - A* and B B*. Its name I 2> A* @ B and coname A ® B* L% I are:

A B
A BX

Morphisms can be recovered from their names or conames:
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Names and conames
Set only has duals for singleton sets.
Let AL Bbea morphism in a monoidal category with dualities
A4 A* and B 4 B*. Its name [ -~ A* ® B and coname A ® B* 2= I are:

A* B
A B*

Morphisms can be recovered from their names or conames:

B B
)
A A
In Set I is terminal, and so all conames A ® B* 5, I must be equal. If

Set had duals this would imply all functions A — B were equal.
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Duals are unique up to iso

In a monoidal category with L 4R, then L 4 R if and only if R ~ R'.
Similarly, if L 4R, then L’ 4R if and only if L ~ L.
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Duals are unique up to iso

In a monoidal category with L 4R, then L 4 R if and only if R ~ R'.
Similarly, if L 4R, then L’ 4R if and only if L ~ L.
Proof: If L 4R and L 4 R/, define maps R — R’ and R’ — R by:

R R
‘(V = L ‘9? L
R R

The snake equations imply that these are inverse.

gf= ¢ - | M -
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Duals are unique up to iso
In a monoidal category with L 4R, then L 4 R if and only if R ~ R'.
Similarly, if L 4R, then L’ 4R if and only if L ~ L.
Proof: If L 4R and L 4 R/, define maps R — R’ and R’ — R by:

R R
L L0
R R
The snake equations imply that these are inverse. Conversely, if L 4 R
and R LR’ is invertible, we can construct a duality L 4 R’:

R’ L
e =
R
L R

Aniso L ~ L’ lets us produce duality L’ 4 R in a similar way.

n
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Unit determines counit

If (L,R,n,¢e) and (L,R,n, ") both exhibit duality, then ¢ = ¢'.
If (L,R,n,¢) and (L,R, 7, €) both exhibit duality, then n = 7/’
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Unit determines counit

If (L,R,n,¢e) and (L,R,n, ") both exhibit duality, then ¢ = ¢'.
If (L,R,n,¢) and (L,R,n’, ¢) both exhibit duality, then n = 7'.
Proof:
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Duals respect tensors

In a monoidal category, I I, and L® L' H{R® R if L4Rand L' HR'.
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Duals respect tensors
In a monoidal category, I I, and L® L' H{R® R if L4Rand L' HR'.

Proof: Taking n = )\1_1: I—-I®Iand e = A;: I ® [ — I shows that
I 1. Snake equations follow from the coherence theorem.
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Duals respect tensors
In a monoidal category, I I, and L® L' H{R® R if L4Rand L' HR'.

Proof: Taking n = )\1_1: I—-I®Iand e = A;: I ® [ — I shows that
I 1. Snake equations follow from the coherence theorem.

Now suppose L 4R and L’ + R’. We make the new unit and counit
maps from the old ones, and compute as follows:

(Lo L)9k 0l — N N (\) ,

L I
4 M/@(L@L/—'
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Duals respect braiding
In a braided monoidal category, L 4R = R - L.
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Duals respect braiding
In a braided monoidal category, L 4R = R - L.

Construct a new duality as follows:

SR

I'“LoR R®L-]
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Duals respect braiding

: . Ll
In a braided monoidal category, L 4R = R - L.

Construct a new duality as follows:

I'“LoR ROL-ST

Test the snake equations:
= - % -
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Duals for morphisms

For a mogphism AL B and chosen dualities A A*, B 4 B*, the right
dual B* £ A* is defined in the following way:

A A A
- -
B B* B*

Represent this graphically by rotating the box for f.
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Sliding

For all morphisms A J, B in a monoidal category with chosen duals

A 4 A* and B - B*:

EARRV
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Duals are functorial

If a monoidal category has chosen right duals, (—)* is a functor.

Proof: Let A ER Band B-% C.

<
<

Similarly, (ida)* = ida~ follows from the snake equations.
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Examples

» In FVect and FHilb, right dual of V Lwisws L V*, acting as
f*(e) :==eof, where W-% C is an arbitrary element of W*.

» In Matc, the dual of a matrix is its transpose.
» In Rel, the dual of a relation is its converse. So the right duals

functor and the dagger functor have the same action: R* = Rf
for all relations R.
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Double duals

In monoidal category with chosen right duals, A** ® B** ~ (A ® B)**.
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Double duals

In monoidal category with chosen right duals, A** ® B** ~ (A ® B)**.

Proof:
(A® B)**
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Teleportation

In a monoidal category with right duals, a teleportation procedure
isa finite family of effects e;: A ® A* — I and unitaries U;: A — A with:

b
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Teleportation

In a monoidal category with right duals, a teleportation procedure
isa finite family of effects e;: A ® A* — I and unitaries U;: A — A with:
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Teleportation

Simplify the history:
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Teleportation

Simplify the history:
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Teleportation

Simplify the history:
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Teleportation

Simplify the history:

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.
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Teleportation

Simplify the history:

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.

If {e;} is a complete set of effects, this will always succeed.
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Teleportation in Hilb

Choose L=R=C?andnf =e=(1 0 O 1), and unitaries U;:

1 0 1 O 0 1 0 1
01 0 -1 10 -1 0
This gives rise to the following family of effects:

(1001 (100 -1 (0110 (01 -1 0)

This is a complete set of effects, since it forms a basis for the vector
space Hilb(C? ® C?,C). So it is guaranteed to be successful.
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Teleportation in Hilb

Choose L=R=C?andnf =e=(1 0 O 1), and unitaries U;:

1 0 1 O 0 1 0 1
01 0 -1 10 -1 0
This gives rise to the following family of effects:

(1001 (100 -1 (0110 (01 -1 0)

This is a complete set of effects, since it forms a basis for the vector
space Hilb(C? ® C?,C). So it is guaranteed to be successful.

This is traditional qubit teleportation.

20/38



Teleportation in Rel

Choose L=R = {0,1} and nf = ¢ = (1 0 0 1), and unitaries:

10 01
01 1 0
This gives rise to the following family of effects:

(1 00 1) (0110

These form a complete set of effects.
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Teleportation in Rel

Choose L=R={0,1}andn'=e= (1 0 0 1), and unitaries:

10 01
01 1 0
This gives rise to the following family of effects:

(1 00 1) (0110

These form a complete set of effects.

This is classical encrypted communication with a one-time pad.
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Graphical calculus for compact categories

A compact category is symmetric monoidal with chosen duals.
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Graphical calculus for compact categories

A compact category is symmetric monoidal with chosen duals.
A well-formed equation between morphisms in a compact category

follows from the axioms if and only if it holds in the graphical
language up to four-dimensional oriented isotopy.
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Graphical calculus for compact categories
A compact category is symmetric monoidal with chosen duals.
A well-formed equation between morphisms in a compact category
follows from the axioms if and only if it holds in the graphical

language up to four-dimensional oriented isotopy.

Wires of our diagram have arrows, isotopy must preserve them:
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Graphical calculus for compact categories
A compact category is symmetric monoidal with chosen duals.
A well-formed equation between morphisms in a compact category
follows from the axioms if and only if it holds in the graphical

language up to four-dimensional oriented isotopy.

Wires of our diagram have arrows, isotopy must preserve them:
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Intermezzo: ribbon categories

Could have got by with less than symmetric monoidal with duals.
Useful in topological quantum computation.

Make some ribbons by cutting long, thin strips from piece of paper.

Verify:
] [

©-C
o

RS
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Compact dagger categories

In a monoidal dagger category, L 4R < R L.
Proof: follows directly from axiom (f ® g)f = fT @ g.
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Compact dagger categories

In a monoidal dagger category, L 4R < R L.
Proof: follows directly from axiom (f ® g)! = fT @ gf.

In a monoidal dagger category, a dagger dual is a duality A 4 A*
witnessed by morphisms I > A* ® A and A ® A* 5> I satisfying:

LA -
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Maximally entangled states

In a compact dagger category, a maximally entangled state is a
bipartite state with:

-
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Maximally entangled states

In a compact dagger category, a maximally entangled state is a
bipartite state with:

-

In a compact dagger category, a state is maximally entangled if and
only if it is part of a dagger duality.
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Maximally entangled states

In a compact dagger category, a maximally entangled state is a
bipartite state with:

-
In a compact dagger category, a state is maximally entangled if and
only if it is part of a dagger duality.
Proof:
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Dagger duals unique up to unitary

Given dagger duals (L - R, n,¢) and (L F R',n/,¢’), construct an
isomorphism R ~ R’ as before:

[ & A\

7\

Then:
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Maximally entangled states unique up to unitary

In a compact dagger category, any two maximally entangled states
—~— A ® B have a unique unitary A — A with:

So maximally entangled states are unique up to a unique unitary.
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Conjugation

In a compact dagger category, every morphism satisfies (f*)" = (f7)*.

Proof:

28/38



Conjugation

On a compact dagger category, conjugation (—), is defined as the
composite of the dagger and the right-duals functor:

(<) = ()T = ()"

Since taking daggers is the identity on objects we have A, := A*.
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Conjugation

On a compact dagger category, conjugation (—), is defined as the
composite of the dagger and the right-duals functor:

(=)s o= (=) T = ()T
Since taking daggers is the identity on objects we have A, := A*.

Draw conjugation by flipping the morphism about a vertical axis:

[7] =[5

Since (—)* and { are contravariant, (—), is covariant.
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Conjugation: examples

Our examples FHilb, Mat¢ and Rel are all compact dagger
categories

» In FHilb: conjugation functor gives conjugate of linear map

» In Matc: conjugation functor gives the conjugate of a matrix,
each matrix entry replaced by its conjugate as a complex number

» In Rel: conjugation is identity
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Trace and dimension

In a compact dagger category, the trace of a morphism A L, Ais the

following scalar Tra(f):
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Trace and dimension

In a compact dagger category, the trace of a morphism A L, Ais the

following scalar Tra(f):

The dimension of an object A is the scalar dim(A) := Tra(ida).
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Trace and dimension

f

In a compact dagger category, the trace of a morphism A - A is the
following scalar Tra(f): < = LIEED> = (f)
Je _
HGH Z: fli> e 4i)
T fofol
Heh* Z liveil
= ‘o
C P) n

I
The dimension of an object A is the scalar dim(A) := Tra(ida).

The trace in FHilb is the ordinary trace.
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Trace is cyclic

In any compact dagger category, Tra(gof) = Trg(f o g).

Proof:

The g slides around the circle, and ends up underneath the f.
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Trace and dimension properties
In a compact dagger category:

> TI‘[(S) =S
> Trags(f ®g) = Tra(f) o Trp(g) £ @ ‘ [@ @

> (Tea(f)' = Tra(rh)
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Trace and dimension properties

In a compact dagger category:
> Tri(s) =s
> Trags(f ®g) = Tra(f) o Trp(g)
> (Tea(f)' = Tra(rh)

Hence:
» dim(I) = id;
» dim(A ® B) = dim(A) o dim(B)
» A~B = dim(A) = dim(B)
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Dual objects are finite-dimensional

Infinite-dimensional Hilbert spaces do not have duals.

Proof: Similarly we could prove dim(A @ B) = dim(A) + dim(B).
Suppose H is an infinite-dimensional Hilbert space. Then there is an
isomorphism H & C ~ H. If H had a dual, then

dim(H) + 1 = dim(H). But this is a contradiction, since there is no
complex number with that property.
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Dual objects are finite-dimensional

Infinite-dimensional Hilbert spaces do not have duals.

Proof: Similarly we could prove dim(A @ B) = dim(A) + dim(B).
Suppose H is an infinite-dimensional Hilbert space. Then there is an
isomorphism H & C ~ H. If H had a dual, then

dim(H) + 1 = dim(H). But this is a contradiction, since there is no
complex number with that property.

This argument would not apply in Rel, since there id; + id; = id;.
Indeed, any set has a dual in Rel, even infinite ones.
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Information flow

In well-pointed monoidal dagger category f = g: A — B if and only if

AN/
] =[]
N

for all a,b: I — B: can compare ‘matrix entries’
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Information flow

In well-pointed monoidal dagger category f = g: A — B if and only if

AN/
] = e
N

for all a,b: I — B: can compare ‘matrix entries’

In Rel can conveniently decorate wires with elements: scalar

z

X

is 1 if and only if there is y such that following scalars both 1:

S
nd (L
x oy



Information flow

In well-pointed monoidal dagger category f = g: A — B if and only if

AN/
] = e
N

for all a,b: I — B: can compare ‘matrix entries’

So can decorate

Y

to signify that if x is connected to z, then must ‘flow’ through some y

X
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Interference

In FHilb, have (destructive) interference:
ifg = (1 ').f= (11),andx =z (}), then

b4
(10) Z (01) Z
¢ ]
= &) U+ le] Ul =-444=-0
x (5) x (?)
X
but both histories in the sum are possible
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Cups are entangled

IfL 4R, and I » R ® L is a product state,
then id; and idr disconnect (factor through I)
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Cups are entangled

If L 4R, and I % R ® L is a product state,
then id; and idr disconnect (factor through I)

D v
Proof: Suppose 7 is [ “—~1® 184 R ® L. Then:

(I X
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Cups are entangled

If L 4R, and I % R ® L is a product state,
then id; and idr disconnect (factor through I)

D v
Proof: Suppose 7 is [ “—~1® 184 R ® L. Then:

RASHS

Interpreting diagram as history of events, disconnect means
output independent of input: L degenerate
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Summary

vVVvVvVvyVvVvyYVvYyYVvyy

Dual objects: bend wires, maximally entangled states

Names and conames: encode morphisms as states

Dual morphisms: sliding, functorial

Teleportation: quantum, one-time pad

Graphical calculus for compact dagger categories: orientation
Conjugation: combine duals with dagger

Trace and dimension: turn morphisms into scalars

Information flow: entanglement vs disconnect
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