Introduction to Quantum Programming and Semantics

Week 7: Frobenius structures

Chris Heunen

THE UNIVERSITY of EDINBURGH

informatics

Introduction to Quantum Programming and Semantics

Week 7: Frobenius structures

Chris Heunen

THE UNIVERSITY of EDINBURGH

informatics

Overview

- Frobenius structure: interacting co/monoid, self-duality
- Normal forms: coherence theorem
- Frobenius law: coherence between dagger and closure
- Classification: in FHilb and Rel
- Phases: unitary operators

Idea
Plaucherel:

$$
x=\sum_{i}\left\langle e_{i} \mid x\right\rangle e_{i}
$$

Orthonormal basis $\left\{e_{i}\right\}$ for H in FHilb gives comonoid $\varphi^{\prime}: e_{i} \mapsto e_{i} \otimes e_{i}$. Its adjoint α is comparison: $e_{i} \otimes e_{i} \mapsto e_{i}$ and $e_{i} \otimes e_{j} \mapsto 0$ if $i \neq j$.

$$
\begin{aligned}
& \langle f(x) \mid y\rangle=\left\langle k \mid f^{t}(y)\right\rangle \\
& \left.\left.\left\langle L_{p}\left(e_{i} \mid e_{j} ; \theta_{k}\right)=\left\langle e_{i}\right| h_{Q}\right| e_{j} \otimes_{k}\right)\right\rangle \\
& \left\langle e_{i} \otimes e_{i} \mid e_{j} \otimes e n\right\rangle \\
& \left\langle e_{i} \mid{ }^{\prime} e_{j}\right\rangle\left\langle e_{i} \mid e_{k}\right\rangle \\
& \text { " } \\
& \text { So if } j=k \text { pice izj andi } \\
& 1=\left\langle e_{i}\right| \hat{h}_{\left.\left(e_{i} e_{i}\right)\right\rangle} \\
& \text { ie. } e_{i}=h_{1}\left(e_{i} e_{i}\right) \\
& {\left[\begin{array}{lll}
1 & \text { iff } i=j=k & \text { or if } j \neq k \\
0 & \text { othwise } & 0=\left\langle e_{i} \mid \alpha_{i}\left(e_{j} a e_{k}\right)\right\rangle \forall_{i}
\end{array}\right.} \\
& \text { so } h_{1}\left(e_{j} \theta_{k}\right)=0
\end{aligned}
$$

Idea

Orthonormal basis $\left\{e_{i}\right\}$ for H in FHilb gives comonoid ${ }_{\sigma}: e_{i} \mapsto e_{i} \otimes e_{i}$. Its adjoint $\boldsymbol{\alpha}_{\text {, }}$ is comparison: $e_{i} \otimes e_{i} \mapsto e_{i}$ and $e_{i} \otimes e_{j} \mapsto 0$ if $i \neq j$. These cooperate:

Idea

Orthonormal basis $\left\{e_{i}\right\}$ for H in FHilb gives comonoid $\varphi^{\prime}: e_{i} \mapsto e_{i} \otimes e_{i}$. Its adjoint $\boldsymbol{\alpha}_{\text {, }}$ is comparison: $e_{i} \otimes e_{i} \mapsto e_{i}$ and $e_{i} \otimes e_{j} \mapsto 0$ if $i \neq j$. These cooperate:

This monoid/comonoid interaction is called the Frobenius law.

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid (A, φ, φ) and monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) satisfying the Frobenius law:

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid $\left(A, \varphi^{\prime}, \varphi\right)$ and monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) satisfying the Frobenius law:

Ifか $=$ か, called dagger Frobenius structure.

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid (A, φ, φ) and monoid $(A, \boldsymbol{\phi}, \boldsymbol{\phi})$ satisfying the Frobenius law:

If $\boldsymbol{\text { 人 }}=$ か, called dagger Frobenius structure.
Examples of dagger Frobenius structures:

- In FHilb: a Hilbert space equipped with an orthogonal basis

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid ($A, \varphi, \varphi, \varphi)$ and monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) satisfying the Frobenius law:

Ifか $=$ か, called dagger Frobenius structure.
Examples of dagger Frobenius structures:

- In FHilb: a Hilbert space equipped with an orthogonal basis
- In FHilb: let G be finite group, spanning Hilbert space A. Define group algebra, $\boldsymbol{\alpha}$: $g \otimes h \mapsto g h$, and $\boldsymbol{\delta}: z \mapsto z \cdot 1_{G}$.

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid (A, φ, φ) and monoid ($A, \boldsymbol{\infty}, \boldsymbol{\phi}$) satisfying the Frobenius law:

Ifか = 人, called dagger Frobenius structure.
Examples of dagger Frobenius structures:

- In FHilb: a Hilbert space equipped with an orthogonal basis
- In FHilb: let G be finite group, spanning Hilbert space A. Define group algebra, $\boldsymbol{\alpha}_{\text {: }} g \otimes h \mapsto g h$, and $\boldsymbol{d}: z \mapsto z \cdot 1_{G}$. Adjoint: $\varphi: \sum_{h \in G} g h^{-1} \otimes h$, and $\varphi: 1_{G} \mapsto$ and $1_{G} \neq g \mapsto 0$.

$$
G=\left(\mathbb{Z}_{3},+, 0\right)
$$

$$
A=C^{3}
$$

$$
\begin{aligned}
&: \mathbb{T}^{3} \longmapsto c \\
& i=1|1\rangle \longmapsto \\
& 11 \\
&12\rangle \longmapsto 0
\end{aligned}
$$

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid (A, φ, φ) and monoid $(A, \boldsymbol{\phi}, \boldsymbol{\phi})$ satisfying the Frobenius law:

Examples of dagger Frobenius structures:

- In FHilb: a Hilbert space equipped with an orthogonal basis
- In FHilb: let G be finite group, spanning Hilbert space A. Define group algebra $\alpha: g \otimes h \mapsto g h$, and $\delta: z \mapsto z \cdot 1_{G}$. Adjoint: $\varphi: \sum_{h \in G} g h^{-1} \otimes h$, and $\varphi: 1_{G} \mapsto g$ and $1_{G} \neq g \mapsto 0$. Frobenius law: LHS $(g \otimes h)=\sum_{k \in G} g k^{-1} \otimes k h=\operatorname{RHS}(g \otimes h)$.

$$
\begin{aligned}
& k=l h^{-1} \\
& l=k h
\end{aligned}
$$

Frobenius structures

In a monoidal category，a Frobenius structure is a comonoid (A, φ, φ) and monoid（ $A, \boldsymbol{\phi}, \boldsymbol{\phi}$ ）satisfying the Frobenius law：

Ifか $=$ か，called dagger Frobenius structure．
Examples of dagger Frobenius structures：
－In FHilb：a Hilbert space equipped with an orthogonal basis
－In FHilb：let G be finite group，spanning Hilbert space A ． Define group algebra， $\boldsymbol{\alpha}_{\text {：}} g \otimes h \mapsto g h$ ，and $\boldsymbol{d}: z \mapsto z \cdot 1_{G}$ ． Adjoint：$\varphi: \sum_{h \in G} g h^{-1} \otimes h$ ，and $\varphi: 1_{G} \mapsto g$ and $1_{G} \neq g \mapsto 0$ ． Frobenius law：LHS $(g \otimes h)=\sum_{k \in G} g k^{-1} \otimes k h=\operatorname{RHS}(g \otimes h)$ ．
－In Rel：let G be groupoid． Monoid in Rel： $\boldsymbol{\text { 人 }}$ ：$(g, h) \sim g \circ h$ ，and $\downarrow: \bullet \sim \operatorname{id}_{X}$ ．

Frobenius structures

In a monoidal category, a Frobenius structure is a comonoid (A, φ, φ) and monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) satisfying the Frobenius law:

Ifか $=$ か, called dagger Frobenius structure.
Examples of dagger Frobenius structures:

- In FHilb: a Hilbert space equipped with an orthogonal basis
- In FHilb: let G be finite group, spanning Hilbert space A. Define group algebra, $\boldsymbol{\alpha}_{\text {: }} g \otimes h \mapsto g h$, and $\boldsymbol{d}: z \mapsto z \cdot 1_{G}$. Adjoint: $\varphi: \sum_{h \in G} g h^{-1} \otimes h$, and $\varphi: 1_{G} \mapsto g$ and $1_{G} \neq g \mapsto 0$. Frobenius law: LHS $(g \otimes h)=\sum_{k \in G} g k^{-1} \otimes k h=\operatorname{RHS}(g \otimes h)$.
- In Rel: let G be groupoid.

Monoid in Rel: فа: $(g, h) \sim g \circ h$, and $\boldsymbol{\bullet}: \bullet \sim \operatorname{id}_{X}$.
Frobenius law: $(g, h) \sim(a, b \circ h)$ for $g=a \circ b, \mathrm{t}(h)=\mathrm{s}(b)$.

Pair of pants

In a dagger monoidal category, if $A \dashv A^{*}$, the pair of pants monoid $A^{*} \otimes A$ carries a dagger Frobenius structure.

Pair of pants

In a dagger monoidal category, if $A \dashv A^{*}$, the pair of pants monoid $A^{*} \otimes A$ carries a dagger Frobenius structure.
Proof.

Extended Frobenius law

Any Frobenius structure satisfies:

Extended Frobenius law

Any Frobenius structure satisfies:

Proof.

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure.

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure.
A Frobenius structure is special if:

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure.
A Frobenius structure is special if:

Examples:

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure. A Frobenius structure is special if:

Examples:

- Group algebra in FHilb is only special for trivial group

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure.
A Frobenius structure is special if:

Examples:

- Group algebra in FHilb is only special for trivial group
- Orthogonal basis in FHilb is special just when basis is orthonormal

Speciality

If φ copies orthogonal basis $\left\{e_{i}\right\}$, can find (squared) norm of e_{i} :

So can characterize orthonormality via Frobenius structure.
A Frobenius structure is special if:

Examples:

- Group algebra in FHilb is only special for trivial group
- Orthogonal basis in FHilb is special just when basis is orthonormal
- Groupoid Frobenius structure in Rel is always special

Classical structures

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.

Classical structures

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.
Examples:

- In FHilb: an orthonormal basis
- In Rel: abelian group

Classical structures

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.
Examples:

- In FHilb: an orthonormal basis
- In Rel: abelian group

Definition of classical structure redundant:

- (Co)commutativity implies half of (co) unitality
- Speciality and Frobenius law imply (co)associativity
- Dual object and Frobenius law imply (co)unitality

Classical structures

In a braided monoidal dagger category, a classical structure is a special commutative dagger Frobenius structure.
Examples:

- In FHilb: an orthonormal basis
- In Rel: abelian group

Definition of classical structure redundant:

- (Co)commutativity implies half of (co) unitality
- Speciality and Frobenius law imply (co)associativity
- Dual object and Frobenius law imply (co)unitality

To check that $(A, \curvearrowright, \mathrm{\delta})$ is classical structure, only need:

Symmetry

Pair of pants hardly ever commutative. However:
A Frobenius structure is symmetric when:

Symmetry

Pair of pants hardly ever commutative. However:
A Frobenius structure is symmetric when:

In a compact category, this is equivalent to the following:

Symmetry

Pair of pants hardly ever commutative. However: A Frobenius structure is symmetric when:

In a compact category, this is equivalent to the following:

$$
\psi^{i}=i^{i}
$$

Examples:

- Pair of pants: in FHilb this says $\operatorname{Tr}(a b)=\operatorname{Tr}(b a)$
- Group algebras: inverses in groups are two-sided inverses
- Groupoid Frobenius structure: inverses are two-sided

Self-duality

If $(A, \varphi, \uparrow, \phi, \phi)$ Frobenius structure in monoidal category, then $A \dashv A$ is self-dual with:

(1)
(2)10)

Self-duality

If $(A, \varphi, \uparrow, \phi, \phi)$ Frobenius structure in monoidal category, then $A \dashv A$ is self-dual with:

Proof.

Nondegenerate forms

Monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) forms Frobenius structure with comonoid $\left(A, \varphi^{\prime}, \varphi\right)$ iff allows nondegenerate form: map $\rho: A \rightarrow I$ with

part of self-duality $A \dashv A$.

Nondegenerate forms

Monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) forms Frobenius structure with comonoid (A, φ, ϕ) iff allows nondegenerate form: map $\rho: A \rightarrow I$ with

part of self-duality $A \dashv A$.
Proof. One direction is the previous theorem.

Nondegenerate forms

Monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) forms Frobenius structure with comonoid (A, ϕ, ϕ) iff allows nondegenerate form: map $\rho: A \rightarrow I$ with

part of self-duality $A \dashv A$.
Proof. One direction is the previous theorem.
Conversely, suppose $I \xrightarrow{\eta} A \otimes A$ satisfies:

Nondegenerate forms

Monoid ($A, \boldsymbol{\phi}, \boldsymbol{\phi}$) forms Frobenius structure with comonoid (A, ϕ, ϕ) iff allows nondegenerate form: map $\rho: A \rightarrow I$ with

part of self-duality $A \dashv A$.
Proof. One direction is the previous theorem.
Conversely, suppose $I \xrightarrow{\eta} A \otimes A$ satisfies:

Define comultiplication as:

Nondegenerate forms

Proof (continued.)

Could have defined the comultiplication with η left or right:

Nondegenerate forms

Proof (continued.)

Could have defined the comultiplication with η left or right:

Counitality:

Nondegenerate forms

Proof (continued.)

Coassociativity:

Nondegenerate forms

Proof (continued.)

Coassociativity:

Frobenius law:

Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism.

Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism. They are isomorphisms. Proof. Given homomorphism $A \xrightarrow{f} B$, construct inverse as:

Homomorphisms

A homomorphism of Frobenius structures is morphism which is both monoid and comonoid homomorphism. They are isomorphisms. Proof. Given homomorphism $A \xrightarrow{f} B$, construct inverse as:

Indeed:

Normal forms

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.

Normal forms

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.
First viewpoint: ok if different diagrams represent same morphism.
Second viewpoint: combinatorial/graph theoretic flavour.

Normal forms

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.
First viewpoint: ok if different diagrams represent same morphism.
Second viewpoint: combinatorial/graph theoretic flavour.
A normal form theorem connects the two:
proving that all diagrams representing fixed morphism can be rewritten into canonical diagram (like coherence theorem)

Normal forms

Two ways to think about graphical calculus:

- diagram represents morphism: merely shorthand to write down e.g. linear map;
- diagram is entity in its own right: can be manipulated by replacing equal parts.
First viewpoint: ok if different diagrams represent same morphism.
Second viewpoint: combinatorial/graph theoretic flavour.
A normal form theorem connects the two:
proving that all diagrams representing fixed morphism can be rewritten into canonical diagram (like coherence theorem)
Unique way to copy $\left(\mathcal{~}^{\circ}\right.$), discard ($\mathrm{\rho}$), fuse ($\mathrm{\rho}$), create ($\mathrm{\rho}$) data!

Spider theorem

Let $(A, \infty, \phi, \varphi, \varphi)$ be a special Frobenius structure. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built out of finitely many pieces $\boldsymbol{\phi}, \phi, \varphi, \varphi, \varphi$, and id, using \circ and \otimes, equals:

Spider theorem

Let $(A, \infty, \phi, \varphi, \varphi)$ be a special Frobenius structure. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built out of finitely many pieces $\alpha, \phi, \varphi, \varphi, \varphi$, and id, using \circ and \otimes, equals:

Proof. Induction on the number of dots.

Spider theorem

Proof. (continued.)

Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \varphi$,

Spider theorem

Proof. (continued.)

Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \rho$. Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots.

Spider theorem

Proof. (continued.)

Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \rho$. Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots. Use naturality to write diagram in form with topmost dot.

Spider theorem

Proof. (continued.)

Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \rho$. Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots. Use naturality to write diagram in form with topmost dot.

- Topmost dot is p : use counitality to eliminate it.

Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \rho$. Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots. Use naturality to write diagram in form with topmost dot.

- Topmost dot is p : use counitality to eliminate it.
- Topmost dot is φ : use coassociativity to reach normal form.

Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \rho$. Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots. Use naturality to write diagram in form with topmost dot.

- Topmost dot is p : use counitality to eliminate it.
- Topmost dot is φ : use coassociativity to reach normal form.
- Topmost dot is \mathbf{d} : impossible by connectedness.

Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of $\alpha, \phi, \varphi, \varphi$.
Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots.
Use naturality to write diagram in form with topmost dot.

- Topmost dot is $p:$ use counitality to eliminate it.
- Topmost dot is φ : use coassociativity to reach normal form.
- Topmost dot is \mathbf{d} : impossible by connectedness.
- Topmost dot is, - : $_{\text {: }}$ the most interesting case.

Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of $\alpha, \boldsymbol{\phi}, \varphi, \varphi$,
Induction step. Assume all diagrams with at most n dots can be brought in normal form, and consider a diagram with $n+1$ dots.
Use naturality to write diagram in form with topmost dot.

- Topmost dot is p : use counitality to eliminate it.
- Topmost dot is φ : use coassociativity to reach normal form.
- Topmost dot is d: impossible by connectedness.
- Topmost dot ish: the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

Spider theorem

Proof. (continued.)
Suppose instead the rest of the diagram is disconnected:

More spider theorems

In a monoidal category, let $(A, \phi, \phi, \varphi, \varphi)$ be a Frobenius structure. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built out of finitely many pieces $م$, ϕ, φ, φ, and id, using \circ and \otimes, equals $(*)$.

More spider theorems

In a monoidal category, let $(A, \phi, \phi, \varphi, \rho)$ be a Frobenius structure. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built out of finitely many pieces $\boldsymbol{\infty}$, ϕ, φ, φ, and id, using \circ and \otimes, equals $(*)$.

In a symmetric monoidal category, let $(A, \phi, \phi, \varphi, \varphi, \uparrow)$ be a commutative Frobenius structure. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built out of finitely many pieces $\boldsymbol{\alpha}, \boldsymbol{\phi}, \varphi, \varphi, \uparrow, \mathrm{id}, \Varangle$, using \circ and \otimes, equals $(*)$.

No braided spider theorem

In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.

No braided spider theorem

In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.
Proof. Regard the following diagram as a piece of string on which an overhand knot is tied:

No braided spider theorem

In a braided non-symmetric monoidal category, there is no normal form for commutative Frobenius algebras.
Proof. Regard the following diagram as a piece of string on which an overhand knot is tied:

The Frobenius algebra axioms induce homotopy equivalences ('deformations') of the corresponding graph. Such moves cannot untie the knot.

Involutive monoids

If (A, m, u) is monoid, so is $\left(A^{*}, m_{*}, u_{*}\right)$.

Involutive monoids

If (A, m, u) is monoid, so is $\left(A^{*}, m_{*}, u_{*}\right)$.
An involution for a monoid ($A, \not \subset, \delta$) is a monoid homomorphism $A \xrightarrow{i} A^{*}$ satisfying $i_{*} \circ i=\mathrm{id}_{A}$.

Involutive monoids

If (A, m, u) is monoid, so is $\left(A^{*}, m_{*}, u_{*}\right)$.
An involution for a monoid (A, , \downarrow, δ) is a monoid homomorphism $A \xrightarrow{i} A^{*}$ satisfying $i_{*} \circ i=\mathrm{id}_{A}$.

A morphism of involutive monoids is monoid homomorphism $A \xrightarrow{f} B$ satisfying $i_{B} \circ f=f_{*} \circ i_{A}$.

Example involutive monoids

- Matrix algebra. \mathbb{M}_{n} is an involutive monoid in FHilb.

Opposite monoid \mathbb{M}_{n}^{*} : multiplication $a b$ in \mathbb{M}_{n}^{*} is $b a$ in \mathbb{M}_{n}. Canonical involution $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}^{*}$ given by $f \mapsto f^{\dagger}$.

Example involutive monoids

- Matrix algebra. \mathbb{M}_{n} is an involutive monoid in FHilb.

Opposite monoid \mathbb{M}_{n}^{*} : multiplication $a b$ in \mathbb{M}_{n}^{*} is $b a$ in \mathbb{M}_{n}. Canonical involution $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}^{*}$ given by $f \mapsto f^{\dagger}$.

- Pair of pants. $A^{*} \otimes A$ involutive in a dagger pivotal category. Identity map as involution, because of conventions:

Example involutive monoids

- Matrix algebra. \mathbb{M}_{n} is an involutive monoid in FHilb.

Opposite monoid \mathbb{M}_{n}^{*} : multiplication $a b$ in \mathbb{M}_{n}^{*} is $b a$ in \mathbb{M}_{n}. Canonical involution $\mathbb{M}_{n} \rightarrow \mathbb{M}_{n}^{*}$ given by $f \mapsto f^{\dagger}$.

- Pair of pants. $A^{*} \otimes A$ involutive in a dagger pivotal category. Identity map as involution, because of conventions:

- Groupoids. G in Rel is involutive. Opposite monoid: induced by opposite groupoid $\mathbf{G}^{\text {op }}$

Canonical involution $G \rightarrow G^{*}$ given by $g \sim g^{-1}$.

Frobenius law from way of the dagger

Monoid ($A, \boldsymbol{\alpha}, \delta$) is dagger Frobenius if and only if i is involution:

Frobenius law from way of the dagger

Monoid ($A, \boldsymbol{\alpha}, \delta$) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

Frobenius law from way of the dagger

Monoid (A, α, δ) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

- i preserves multiplication:

Frobenius law from way of the dagger

Monoid (A, α, δ) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

- i preserves multiplication:

- i preserves units: easy.

Frobenius law from way of the dagger

Monoid (A, ϕ, δ) is dagger Frobenius if and only if i is involution:

Proof. Assume dagger Frobenius.

- i preserves multiplication:

- i preserves units: easy.
- i is involution:

Frobenius law from way of the dagger

Proof. (continued.) Conversely, suppose $i_{*} \circ i=\mathrm{id}$. Then:

Frobenius law from way of the dagger

Proof. (continued.) Conversely, suppose $i_{*} \circ i=\mathrm{id}$. Then:

So we have a Frobenius structure, defined by a nondegenerate form. Is it a dagger Frobenius structure?

Frobenius law from way of the dagger

Proof. (continued.) Conversely, suppose $i_{*} \circ i=\mathrm{id}$. Then:

So we have a Frobenius structure, defined by a nondegenerate form. Is it a dagger Frobenius structure?
The condition that i preserves multiplication gives:

So the form definition gives rise to the correct comultiplication.

Classification in FHilb

Theorem: special dagger Frobenius structures in FHilb are of the form $\mathbb{M}_{n_{1}} \oplus \cdots \mathbb{M}_{n_{k}}$.

Classification in FHilb

Theorem: special dagger Frobenius structures in FHilb are of the form $\mathbb{M}_{n_{1}} \oplus \cdots \mathbb{M}_{n_{k}}$.

Proof:

- Cayley: dagger Frobenius structure on H embeds into $H^{*} \otimes H$
- $H^{*} \otimes H$ isomorphic to $\mathbb{M}_{\operatorname{dim}(H)}$
- so H involutive subalgebra of $\mathbb{M}_{\operatorname{dim}(H)}$: C^{*}-algebra
- Artin-Wedderburn: must be of form $\mathbb{M}_{n_{1}} \oplus \cdots \mathbb{M}_{n_{k}}$

Classification in FHilb
$\left(a_{1}, \ldots, a_{k}\right) \in A \quad a_{i}: \mathbb{C}^{\prime \prime} \rightarrow \mathbb{C}^{4}$. $\left(b_{1}, \ldots, b_{k}\right)$

$$
\left(a_{1}, \ldots, a_{k}\right) \cdot\left(b_{1}, \ldots, b_{k}\right)=\left(a, b, \ldots, a_{k} b_{k}\right)
$$

Theorem: special dagger Frobenius structures in FHilb are of the form $\mathbb{M}_{n_{1}} \oplus \cdots \mathbb{M}_{n_{k}}=A$

Proof:

- Cayley: dagger Frobenius structure on H embeds into $H^{*} \otimes H$
- $H^{*} \otimes H$ isomorphic to $\mathbb{M}_{\operatorname{dim}(H)}$
- so H involutive subalgebra of $\mathbb{M}_{\operatorname{dim}(H)}$: C^{*}-algebra
- Artin-Wedderburn: must be of form $\mathbb{M}_{n_{1}} \oplus \cdots \mathbb{M}_{n_{k}}$

Corollary: classical structure in FHilb copy orthonormal bases Proof: must be of form $\mathbb{C} \oplus \cdots \oplus \mathbb{C} .=\mathbb{C}^{n}$
$\left.L_{\varphi}\right)\left(x_{1}, \ldots, k_{h}\right)=\sum_{k_{i} \in x_{i}}$
M_{n} commentative $\Longleftrightarrow n=1$
c $\left(\left(x_{1}, \ldots, x_{L}\right) \otimes\left(y_{1}, \ldots y_{l}\right)\right)=x, y_{1} \otimes \ldots \otimes k_{k} y_{k}$

$$
\Rightarrow a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad a b=1 b a
$$

Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.

Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.
Proof. For nonzero copyable states:

Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.
Proof. For nonzero copyable states:

If $\langle x \mid y\rangle=0$, then this is satisfied.

Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.
Proof. For nonzero copyable states:

If $\langle x \mid y\rangle=0$, then this is satisfied.
If $\langle x \mid y\rangle \neq 0$, this implies $\langle x \mid x\rangle=\langle x \mid y\rangle$. Similarly $\langle y \mid x\rangle=\langle y \mid y\rangle$.

Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only if basis is orthogonal.
Proof. For nonzero copyable states:

If $\langle x \mid y\rangle=0$, then this is satisfied.
If $\langle x \mid y\rangle \neq 0$, this implies $\langle x \mid x\rangle=\langle x \mid y\rangle$. Similarly $\langle y \mid x\rangle=\langle y \mid y\rangle$.
Hence $\langle x-y \mid x-y\rangle=\langle x \mid x\rangle-\langle x \mid y\rangle-\langle y \mid x\rangle+\langle y \mid y\rangle=0$, so $x=y$.

Orthogonal bases and morphisms

In FHilb, morphism between two commutative dagger Frobenius structures acts as function on copyable states if and only if it is comonoid homomorphism.

A function

$$
f=\left\{d_{1}, \ldots, d_{n}\right\} \rightarrow\left\{e_{1}, \ldots, e_{n}\right\}
$$

induces a linear function

$$
\begin{aligned}
& \mathbb{C}^{n} \longrightarrow \mathbb{C}^{a} \\
& \left|d_{i}\right\rangle \longmapsto\left|f\left(d_{i}\right)\right\rangle
\end{aligned}
$$

that is in fact a comonaid homomaphism

Orthogonal bases and morphisms

In FHilb, morphism between two commutative dagger Frobenius structures acts as function on copyable states if and only if it is comonoid homomorphism.
Proof. Suffices to see about basis of copyable states $\left\{e_{i}\right\}$.

Hence $f\left(e_{i}\right)$ copyable.

Classification in Rel

Theorem: Special dagger Frobenius structures in Rel correspond exactly to groupoids.

Classification in Rel

Theorem: Special dagger Frobenius structures in Rel correspond exactly to groupoids.
Proof. Write $A \times A \xrightarrow{M} A$ for multiplication, $U \subseteq A$ for unit.

Classification in Rel

Theorem: Special dagger Frobenius structures in Rel correspond exactly to groupoids.
Proof. Write $A \times A \xrightarrow{M} A$ for multiplication, $U \subseteq A$ for unit.
M is single-valued: by speciality $a\left(M \circ M^{\dagger}\right) b$ iff $a=b$:

So: if $(c, d) M a$ and $(c, d) M b$, must have $a=b$. May simply write $a b$ for unique c with $(a, b) M c$. Remember: $a b$ not always defined!

Classification in Rel

Proof. (continued)
Associativity:

So $a b$ and $(a b) c$ defined exactly when $b c$ and $a(b c)$ are defined, and then $(a b) c=a(b c)$.

Classification in Rel

Proof. (continued)
Unitality: for units $x, y \in U$

So: a, b allow $x \in U$ with $x a=b$ iff $a=b$.
And: a, b allow $y \in U$ with $a y=b$ iff $a=b$.
If $z \in U$ then $x z=x$ for some $x \in U$. But then $x=z$!
Units idempotent; multiplication of different ones undefined.
If $x a=a=x^{\prime} a$, then $a=x a=x\left(x^{\prime} a\right)=\left(x x^{\prime}\right) a$, so $x=x^{\prime}$.
So every element has unique left/right identity.

Classification in Rel

Proof. (continued)
Category: U set of objects, A set of morphisms.
If $f g$ defined and $g h$ defined, want $(f g) h=f(g h)$ defined too:

If $f g$ and $g h$ defined then LHS defined, so RHS defined too.

Classification in Rel

Proof. (continued)

Inverses: for $f \in A$ with left unit x and right unit y :

$$
\left.\begin{array}{l}
g f=x=i d_{\text {dan cf) }} \\
f g=y=i d_{\operatorname{cod}(f)}^{x}
\end{array}\right\} g g=f^{-1}
$$

Phases

Let $\left(A, \kappa_{\alpha}, \delta\right)$ be Frobenius structure in a monoidal dagger category. State $I \xrightarrow{a} A$ is called phase when:

Phases

Let $\left(A, \lambda_{\alpha}, \delta\right)$ be Frobenius structure in a monoidal dagger category. State $I \xrightarrow{a} A$ is called phase when: if ζ° (opes basis he, \mid

Its (right) phase shift is the following orphism $A \rightarrow A:=\sum_{i j} a_{i} a_{j}\left\langle e_{j} \mid l_{i}\right\rangle_{i}$

$$
a^{a}=\sqrt[a]{a}
$$

$$
\begin{aligned}
& =\sum_{i} a_{i} a_{i}^{*} e_{i} \\
& =\sum_{i}\left|a_{i}\right|^{2} e_{i}
\end{aligned}
$$

Example phases

- For classical structure in FHilb copying basis $\left\{e_{i}\right\}$, vector $a=a_{1} e_{1}+\cdots a_{n} e_{n}$ is phase iff each a_{i} on unit circle: $\left|a_{i}\right|^{2}=1$.

Example phases

- For classical structure in FHilb copying basis $\left\{e_{i}\right\}$, vector $a=a_{1} e_{1}+\cdots a_{n} e_{n}$ is phase iff each a_{i} on unit circle: $\left|a_{i}\right|^{2}=1$.
- The unit δ of a Frobenius structure is always a phase.

Example phases

- For classical structure in FHilb copying basis $\left\{e_{i}\right\}$, vector $a=a_{1} e_{1}+\cdots a_{n} e_{n}$ is phase iff each a_{i} on unit circle: $\left|a_{i}\right|^{2}=1$.
- The unit δ of a Frobenius structure is always a phase.
- In a compact dagger category, phases for pair of pants $\left(A^{*} \otimes A, / \cap \backslash, \smile\right)$ correspond to unitary morphisms. Proof.

Example phases

- For classical structure in FHilb copying basis $\left\{e_{i}\right\}$, vector $a=a_{1} e_{1}+\cdots a_{n} e_{n}$ is phase iff each a_{i} on unit circle: $\left|a_{i}\right|^{2}=1$.
- The unit δ of a Frobenius structure is always a phase.
- In a compact dagger category, phases for pair of pants ($A^{*} \otimes A, / \cap \backslash, \succ$) correspond to unitary morphisms. Proof. The name of an morphism $A \xrightarrow{f} A$ is a phase when:

But this means $f \circ f^{\dagger}=\operatorname{id}_{A}$; similarly $f^{\dagger} \circ f=\operatorname{id}_{A}$.

Example phases

- Phases of Frobenius structure \mathbb{M}_{n} in FHilb form set $U(n)$ of n-by- n unitary matrices. Hence phases of $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ range over $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$.

Example phases

- Phases of Frobenius structure \mathbb{M}_{n} in FHilb form set $U(n)$ of n-by- n unitary matrices. Hence phases of $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ range over $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$.
- Classical structure \mathbb{C}^{n} copying basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Phases are elements of $U(1) \times \cdots \times U(1)$; phase shift $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is accompanying unitary matrix.

Example phases

- Phases of Frobenius structure \mathbb{M}_{n} in FHilb form set $U(n)$ of n-by- n unitary matrices. Hence phases of $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ range over $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$.
- Classical structure \mathbb{C}^{n} copying basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Phases are elements of $U(1) \times \cdots \times U(1)$; phase shift $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is accompanying unitary matrix.
- The phases of a Frobenius structure in Rel induced by a group G are elements of that group G itself.

Example phases

- Phases of Frobenius structure \mathbb{M}_{n} in FHilb form set $U(n)$ of n-by- n unitary matrices. Hence phases of $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ range over $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$.
- Classical structure \mathbb{C}^{n} copying basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Phases are elements of $U(1) \times \cdots \times U(1)$; phase shift $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is accompanying unitary matrix.
- The phases of a Frobenius structure in Rel induced by a group G are elements of that group G itself.
Proof. For a subset $a \subseteq G$, equation defining phases reads

$$
\left\{g^{-1} h \mid g, h \in a\right\}=\left\{1_{G}\right\}=\left\{h g^{-1} \mid g, h \in a\right\}
$$

So if $g \in G$, then $a=\{g\}$ is a phase. But if a contains distinct elements $g \neq h$ of G, cannot be phase. Similarly, $a=\emptyset$ not phase. Hence a phase precisely when singleton $\{g\}$.

Phase group

In a monoidal dagger category, the phases for a dagger Frobenius structure form a group, with unit δ and:

Phase group

In a monoidal dagger category, the phases for a dagger Frobenius structure form a group, with unit δ and:

Proof. This is again a well-defined phase:

The flipped equation follows similarly.
Associativity is clear, hence phases form a monoid.

Phase group

Proof. (continued)
Left-inverse of phase a is:

$$
\frac{1}{6}=\frac{ڭ_{\ell}}{}
$$

Phase group

Proof. (continued)
Left-inverse of phase a is:

$$
\stackrel{\rightharpoonup}{g}=\stackrel{\ominus}{!}^{\rho}
$$

Left-inverse of a is $-a$:

Phase group

Proof. (continued)
Left-inverse of phase a is:

$$
\underset{-a}{\square}=0_{0}^{a}
$$

Left-inverse of a is $-a$:

Similarly there is right-inverse. But in monoids, left and right inverses are equal: $l=l(x r)=(l x) r=r$.

Example phase groups

- In FHilb, the phase group for the pair of pants Frobenius structure is the unitary group.

Example phase groups

- In FHilb, the phase group for the pair of pants Frobenius structure is the unitary group.
- Phase addition in the Frobenius structure $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ in FHilb is entrywise multiplication in $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$. In particular, phase addition in a classical structure in FHilb is multiplication of diagonal matrices.

Example phase groups

- In FHilb, the phase group for the pair of pants Frobenius structure is the unitary group.
- Phase addition in the Frobenius structure $\mathbb{M}_{k_{1}} \oplus \cdots \oplus \mathbb{M}_{k_{n}}$ in FHilb is entrywise multiplication in $U\left(k_{1}\right) \times \cdots \times U\left(k_{n}\right)$. In particular, phase addition in a classical structure in FHilb is multiplication of diagonal matrices.
- In Rel, the phase group induced by a group G is the group itself.

Phased spider theorem

Let (A, ∞, δ) be classical structure in braided monoidal dagger category. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built of finitely many人, \circ, id, σ and phases using \circ, \otimes, and \dagger, equals

where a ranges over all the phases used in the diagram.

Phased spider theorem

Let (A, ∞, δ) be classical structure in braided monoidal dagger category. Any connected morphism $A^{\otimes m} \rightarrow A^{\otimes n}$ built of finitely many人, δ, id, σ and phases using \circ, \otimes, and \dagger, equals

where a ranges over all the phases used in the diagram.
Proof. Use braidings to have all phases dangle at the bottom. Apply Spider Theorem. Use phase addition to reduce to single phase $\sum a$ on bottom right. Apply Spider Theorem again.

State transfer

State transfer protocol: transfer state of Hilbert space H from one system to another, with success probability $1 / \operatorname{dim}(H)^{2}$.
May be lax in drawing, e.g. projection $H \otimes H \rightarrow H \otimes H$:

The procedure looks like this:

Extra challenge: apply phase gate while transferring state

Problem:
is not really a measurement because if uses puns states $|\psi\rangle \in \mathbb{C}^{2}$ whereas it needs mixed states $\Sigma_{i}\left|\psi_{i}>\psi_{i}\right|: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ "density matrices" becaux measuring one half of a bipartite pure state is generally, a mixed state
Answer:
don't wall in Flits, but CPM(FHils). if C^{\prime} is dagger compach so is CPM(C). So can use same pictures, but also distinguish "quantum wires" and "classical sires". a state I $\rightarrow H$ in $\|$ Hill e is a pule stake (like $|\psi\rangle$) $\operatorname{CPM}\left(\mathbb{F} H_{i} / 3\right)$ - miked slake (bike $\left.\sum_{i=1}^{n}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)$

Summary

- Frobenius structures: interacting co/monoid, self-duality
- Normal forms: spider theorems
- Frobenius law: justified by coherence
- Classification: matrix algebras, bases, groupoids
- Phases: unitary operators, state transfer

Next week: interaction between two Frobenius structures

