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Overview

I Frobenius structure: interacting co/monoid, self-duality

I Normal forms: coherence theorem

I Frobenius law: coherence between dagger and closure

I Classification: in FHilb and Rel

I Phases: unitary operators
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Idea

Orthonormal basis {ei} for H in FHilb gives comonoid : ei 7! ei ⌦ ei.
Its adjoint is comparison: ei ⌦ ei 7! ei and ei ⌦ ej 7! 0 if i 6= j.

These cooperate:

ei ej

=

2

4 ei ej if i = j

0 if i 6= j

3

5 =

ejei

This monoid/comonoid interaction is called the Frobenius law.
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Frobenius structures
In a monoidal category, a Frobenius structure is a comonoid (A, , )
and monoid (A, , ) satisfying the Frobenius law:

=

If = , called dagger Frobenius structure.
Examples of dagger Frobenius structures:
I In FHilb: a Hilbert space equipped with an orthogonal basis
I In FHilb: let G be finite group, spanning Hilbert space A.

Define group algebra : g ⌦ h 7! gh, and : z 7! z · 1G.
Adjoint: :

P
h2G

gh
�1 ⌦ h, and : 1G 7! g and 1G 6= g 7! 0.

Frobenius law: LHS(g ⌦ h) =
P

k2G
gk

�1 ⌦ kh = RHS(g ⌦ h).
I In Rel: let G be groupoid.

Monoid in Rel: : (g, h) ⇠ g � h, and : • ⇠ idX .
Frobenius law: (g, h) ⇠ (a, b � h) for g = a � b, t(h) = s(b).
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Pair of pants

In a dagger monoidal category, if A a A
⇤, the pair of pants monoid

A
⇤ ⌦ A carries a dagger Frobenius structure.

Proof.

=
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Extended Frobenius law
Any Frobenius structure satisfies:

= =

Proof.

= = =

= =
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Extended Frobenius law
Any Frobenius structure satisfies:

= =

Proof.

= = =

= =
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Speciality
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=
ei ei

ei ei

So can characterize orthonormality via Frobenius structure.
A Frobenius structure is special if:

=

Examples:
I Group algebra in FHilb is only special for trivial group
I Orthogonal basis in FHilb is special just when basis is orthonormal
I Groupoid Frobenius structure in Rel is always special
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Classical structures
In a braided monoidal dagger category, a classical structure is a
special commutative dagger Frobenius structure.

Examples:
I In FHilb: an orthonormal basis
I In Rel: abelian group

Definition of classical structure redundant:
I (Co)commutativity implies half of (co)unitality
I Speciality and Frobenius law imply (co)associativity
I Dual object and Frobenius law imply (co)unitality

To check that (A, , ) is classical structure, only need:

= = =
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Symmetry
Pair of pants hardly ever commutative. However:
A Frobenius structure is symmetric when:

=

In a compact category, this is equivalent to the following:

=

Examples:
I Pair of pants: in FHilb this says Tr(ab) = Tr(ba)

I Group algebras: inverses in groups are two-sided inverses
I Groupoid Frobenius structure: inverses are two-sided
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Self-duality

If (A, , , , ) Frobenius structure in monoidal category, then A a A

is self-dual with:

A A

=

A A

A A

=
A A

Proof.

= = =
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Nondegenerate forms
Monoid (A, , ) forms Frobenius structure with comonoid (A, , ) iff
allows nondegenerate form: map : A I with

part of self-duality A a A.

Proof. One direction is the previous theorem.
Conversely, suppose I

⌘
A ⌦ A satisfies:

⌘
= =

⌘

Define comultiplication as:

= ⌘
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Nondegenerate forms

Proof (continued.)
Could have defined the comultiplication with ⌘ left or right:

⌘

=
⌘

⌘ =
⌘

⌘ =
⌘

Counitality:

=
⌘

=
⌘

= =
⌘

=
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Nondegenerate forms
Proof (continued.)
Coassociativity:

=
⌘ ⌘

=
⌘

⌘

=

⌘

⌘

=

Frobenius law:

=
⌘

= ⌘ =
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Nondegenerate forms
Proof (continued.)
Coassociativity:

=
⌘ ⌘

=
⌘

⌘

=

⌘

⌘

=

Frobenius law:

=
⌘

= ⌘ =
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Homomorphisms
A homomorphism of Frobenius structures is morphism which is both
monoid and comonoid homomorphism.

They are isomorphisms.
Proof. Given homomorphism A

f
B, construct inverse as:

f
�1 = f

Indeed:

f

f

=
f

= =
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Normal forms

Two ways to think about graphical calculus:
I diagram represents morphism:

merely shorthand to write down e.g. linear map;
I diagram is entity in its own right:

can be manipulated by replacing equal parts.

First viewpoint: ok if different diagrams represent same morphism.
Second viewpoint: combinatorial/graph theoretic flavour.
A normal form theorem connects the two:
proving that all diagrams representing fixed morphism can be
rewritten into canonical diagram (like coherence theorem)
Unique way to copy ( ), discard ( ), fuse ( ), create ( ) data!
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Spider theorem

Let (A, , , , ) be a special Frobenius structure. Any connected
morphism A

⌦m
A
⌦n built out of finitely many pieces , , , , and

id, using � and ⌦, equals:

n

m

Proof. Induction on the number of dots.
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Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.

I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.

I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41

↓ ,



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.

I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41

it ie



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.

I Topmost dot is : the most interesting case.
Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41

Id↳↳ !ofe--of



Spider theorem

Proof. (continued.)
Base case. Trivial, as the diagram must be one of , , , .
Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.
Use naturality to write diagram in form with topmost dot.
I Topmost dot is : use counitality to eliminate it.
I Topmost dot is : use coassociativity to reach normal form.
I Topmost dot is : impossible by connectedness.
I Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

17 / 41



Spider theorem
Proof. (continued.)
Suppose instead the rest of the diagram is disconnected:

=

= · · · = =

18 / 41
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More spider theorems
In a monoidal category, let (A, , , , ) be a Frobenius structure. Any
connected morphism A

⌦m
A
⌦n built out of finitely many pieces ,

, , , and id, using � and ⌦, equals (⇤).

(⇤)

In a symmetric monoidal category, let (A, , , , ) be a commutative
Frobenius structure. Any connected morphism A

⌦m
A
⌦n built out

of finitely many pieces , , , , id, , using � and ⌦, equals (⇤).
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No braided spider theorem
In a braided non-symmetric monoidal category, there is no normal
form for commutative Frobenius algebras.

Proof. Regard the following diagram as a piece of string on which an
overhand knot is tied:

The Frobenius algebra axioms induce homotopy equivalences
(‘deformations’) of the corresponding graph. Such moves cannot
untie the knot.
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Involutive monoids

If (A,m, u) is monoid, so is (A⇤,m⇤, u⇤).

An involution for a monoid (A, , ) is a monoid homomorphism
A

i
A
⇤ satisfying i⇤ � i = idA.

A

A

i

i

=

A

A

B

A

f

iB

=

A

B

iA

f

A morphism of involutive monoids is monoid homomorphism A
f

B

satisfying iB � f = f⇤ � iA.
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Example involutive monoids
I Matrix algebra. Mn is an involutive monoid in FHilb.

Opposite monoid M⇤
n
: multiplication ab in M⇤

n
is ba in Mn.

Canonical involution Mn M⇤
n

given by f 7! f
†.

I Pair of pants. A
⇤ ⌦ A involutive in a dagger pivotal category.

Identity map as involution, because of conventions:

✓ ◆

⇤
=

0

B@

1

CA

†

=

I Groupoids. G in Rel is involutive.
Opposite monoid: induced by opposite groupoid G

op

=

Canonical involution G G
⇤ given by g ⇠ g

�1.
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Frobenius law from way of the dagger
Monoid (A, , ) is dagger Frobenius if and only if i is involution:

i =

Proof. Assume dagger Frobenius.
I i preserves multiplication:

i i
= = = =

i

I i preserves units: easy.
I i is involution:

i

i

= = =
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Frobenius law from way of the dagger
Proof. (continued.) Conversely, suppose i⇤ � i = id. Then:

= and by applying †, =

So we have a Frobenius structure, defined by a nondegenerate form.
Is it a dagger Frobenius structure?
The condition that i preserves multiplication gives:
0

BB@ =

1

CCA )

0

B@ =

1

CA )
 

=

!

So the form definition gives rise to the correct comultiplication.
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Classification in FHilb

Theorem: special dagger Frobenius structures in FHilb are of the
form Mn1 � · · ·Mnk

.

Proof:

I Cayley: dagger Frobenius structure on H embeds into H
⇤ ⌦ H

I H
⇤ ⌦ H isomorphic to Mdim(H)

I so H involutive subalgebra of Mdim(H): C*-algebra
I Artin-Wedderburn: must be of form Mn1 � · · ·Mnk

Corollary: classical structure in FHilb copy orthonormal bases
Proof: must be of form C� · · ·� C.
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Orthogonal bases

Frobenius structure that copies basis is dagger Frobenius if and only
if basis is orthogonal.

Proof. For nonzero copyable states:

x x x

x x y

=
x x

x y

=
xx

yx

=
x x x

x y y

If hx|yi = 0, then this is satisfied.
If hx|yi 6= 0, this implies hx|xi = hx|yi. Similarly hy|xi = hy|yi.
Hence hx � y|x � yi = hx|xi � hx|yi � hy|xi+ hy|yi = 0, so x = y.
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Orthogonal bases and morphisms

In FHilb, morphism between two commutative dagger Frobenius
structures acts as function on copyable states if and only if it is
comonoid homomorphism.

Proof. Suffices to see about basis of copyable states {ei}.

ei ei

f f

=

ei

f f

=

ei

f

Hence f(ei) copyable.
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Classification in Rel

Theorem: Special dagger Frobenius structures in Rel correspond
exactly to groupoids.

Proof. Write A ⇥ A
M

A for multiplication, U ✓ A for unit.
M is single-valued: by speciality a(M � M

†)b iff a = b:

a

b

c d =

a

b

So: if (c, d)Ma and (c, d)Mb, must have a = b.
May simply write ab for unique c with (a, b)Mc.
Remember: ab not always defined!
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Classification in Rel

Proof. (continued)
Associativity:

a b c

(ab)c

ab
=

cba

a(bc)

bc

So ab and (ab)c defined exactly when bc and a(bc) are defined, and
then (ab)c = a(bc).
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Classification in Rel

Proof. (continued)
Unitality: for units x, y 2 U

b

a

x

=

a

b

=

b

a

y

So: a, b allow x 2 U with xa = b iff a = b.
And: a, b allow y 2 U with ay = b iff a = b.
If z 2 U then xz = x for some x 2 U. But then x = z!
Units idempotent; multiplication of different ones undefined.
If xa = a = x

0
a, then a = xa = x(x0a) = (xx

0)a, so x = x
0.

So every element has unique left/right identity.
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Classification in Rel

Proof. (continued)
Category: U set of objects, A set of morphisms.
If fg defined and gh defined, want (fg)h = f(gh) defined too:

f

g

h

gh

fg

=

f gh

f(gh) = (fg)h

fg h

If fg and gh defined then LHS defined, so RHS defined too.
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Classification in Rel

Proof. (continued)
Inverses: for f 2 A with left unit x and right unit y:

f

g

f

y

x

=

f y

f

x f

32 / 41
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Phases
Let (A, , ) be Frobenius structure in a monoidal dagger category.
State I

a
A is called phase when:

a

a

= =

a

a

Its (right) phase shift is the following morphism A A:

a =
a
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Example phases

I For classical structure in FHilb copying basis {ei}, vector
a = a1e1 + · · · anen is phase iff each ai on unit circle: |ai|2 = 1.

I The unit of a Frobenius structure is always a phase.

I In a compact dagger category, phases for pair of pants
(A⇤ ⌦ A, , ) correspond to unitary morphisms.
Proof. The name of an morphism A

f
A is a phase when:

=
f

f

=
f

f

But this means f � f
† = idA; similarly f

† � f = idA.
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Example phases

I Phases of Frobenius structure Mn in FHilb form set U(n) of
n-by-n unitary matrices. Hence phases of Mk1 � · · ·�Mkn

range
over U(k1)⇥ · · ·⇥ U(kn).

I Classical structure Cn copying basis {e1, . . . , en}.
Phases are elements of U(1)⇥ · · ·⇥ U(1);
phase shift Cn Cn is accompanying unitary matrix.

I The phases of a Frobenius structure in Rel induced by a group G

are elements of that group G itself.
Proof. For a subset a ✓ G, equation defining phases reads

{g
�1

h | g, h 2 a} = {1G} = {hg
�1 | g, h 2 a}.

So if g 2 G, then a = {g} is a phase. But if a contains distinct
elements g 6= h of G, cannot be phase. Similarly, a = ; not
phase. Hence a phase precisely when singleton {g}.
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Phase group
In a monoidal dagger category, the phases for a dagger Frobenius
structure form a group, with unit and:

a + b

=
a b

Proof. This is again a well-defined phase:

a + b

a + b

=

a b

a b

=

a

a

b

b

=
b

b

=

The flipped equation follows similarly.
Associativity is clear, hence phases form a monoid.
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Phase group
Proof. (continued)
Left-inverse of phase a is:

�a

=
a

Left-inverse of a is �a:

(�a) + a

=

a

a

=

a

a

=

Similarly there is right-inverse. But in monoids, left and right
inverses are equal: l = l(xr) = (lx)r = r.
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Example phase groups

I In FHilb, the phase group for the pair of pants Frobenius
structure is the unitary group.

I Phase addition in the Frobenius structure Mk1 � · · ·�Mkn
in

FHilb is entrywise multiplication in U(k1)⇥ · · ·⇥ U(kn).
In particular, phase addition in a classical structure in FHilb is
multiplication of diagonal matrices.

I In Rel, the phase group induced by a group G is the group itself.
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Phased spider theorem
Let (A, , ) be classical structure in braided monoidal dagger
category. Any connected morphism A

⌦m
A
⌦n built of finitely many

, , id,� and phases using �, ⌦, and †, equals
nz }| {

P
a

| {z }
m

where a ranges over all the phases used in the diagram.

Proof. Use braidings to have all phases dangle at the bottom. Apply
Spider Theorem. Use phase addition to reduce to single phase

P
a

on bottom right. Apply Spider Theorem again.
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State transfer
State transfer protocol: transfer state of Hilbert space H from one
system to another, with success probability 1/ dim(H)2.
May be lax in drawing, e.g. projection H ⌦ H H ⌦ H:

= =

The procedure looks like this:

1p
n

1p
n

measure the first qubit

measure both qubits together

prepare the second qubit

=
1p
n

1p
n

=
1
n

Extra challenge: apply phase gate while transferring state

� =

condition on first qubit

measurement projection

prepare second qubit

�
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Preem :

↑ is not really a measurement because it uses

Pur
states 14> EK

* Whereas it needs

mixed states [: 144) :
K*-4 "density matrices

-

because measuring one half of a bipartite ple
state

B B

C
a

mixed state f tL
i generally

( B
-

Answer ; T #
-

don't work in Attilb
,

but CPM(Hilb). NA A

if I is dagge compacty so is <PMIDI.

So can use same pictures,
but also distinguish brid

"quantum wires" and "classical wires" E

·
a late I H in Afttils is a ph state [like 147)

1 IPMIHI) - mixed State (like E14i>(4i))



Summary

I Frobenius structures: interacting co/monoid, self-duality

I Normal forms: spider theorems

I Frobenius law: justified by coherence

I Classification: matrix algebras, bases, groupoids

I Phases: unitary operators, state transfer

Next week: interaction between two Frobenius structures
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