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Tensor products
Function f: U x V— W is bilinear when it is linear in each variable
Tensor product of vector spaces U and V is a vector space U ® V with
bilinear f: U x V— U ® V such that for every bilinear g: U x V—W
there exists unique linear h: U® V— W such thatg=hof

(bilinear)f
UxV U®
: h (linear)
(bilinear) g v

w

Hilbert space with (u @ v|u’ @ V') = (u|u’) (v|V')
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IfHLH and K-S K thenfog: HOK —H @K
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Fea=| o
(fmlg) (fmZg) (fmng)
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Monoidal categories

Category theory describes systems and processes:
> physical systems, and physical processes governing them;
» data types, and algorithms manipulating them,;
» algebraic structures, and structure-preserving functions;
> logical propositions, and implications between them.
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Monoidal categories

Category theory describes systems and processes:
> physical systems, and physical processes governing them;
» data types, and algorithms manipulating them,;
» algebraic structures, and structure-preserving functions;
> logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:
» independent physical systems evolve simultaneously;
» running computer algorithms in parallel;
» products or sums of algebraic or geometric structures;

» using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).

3/19



Why so serious?

» Let A, B and C be processes, and let ® be parallel composition
» What relationship should there be between these systems?

A®B)®C AR (B®C)
» It’s not right to say they’re equal, since even just for sets,
(SxT)xU#Sx(TxU).

» Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

» How do we treat trivial systems?
» What should the relationship be between A ® B and B ® A?
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Monoidal category
is a category C equipped with the following data:

>
a tensor product functor 4 p) s AE

©:CxC—=C iy L)
» a unit object (A',51) AT B
I € Ob(C); o
» an associator natural isomorphism
(ARB)®C-22% A% (B C);

» a left unitor natural isomorphism

I0AMA: B A = A
» and a right unitor natural isomorphism

ARIA.
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Monoidal category
must satisfy triangle and pentagon equations:
(= ) &) i—> (4, (0

QA 1.B
A®I) ®B—>A® (I® B) l /

PA@ICIB\A /@‘@AB (a.0) = (41

(A®B®C)®D A® (B®C)®D)
QA B®C,D
aaBc® idD/ \idA ® aB.c,p
(A®B)®C)®@D A® (B® (C®D))

O‘A®m %AJ;C@

(A®B)® (C®D)
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Monoidal category

must satisfy triangle and pentagon equations:

QAIB
A®)®B ————— A® (I®B)

PA®1dB\A /1dA®>\B

(A®B®C)®D A® (B®C)®D)
QA BRC,D
appc® idp/ \idA ® ap,cp
(A®B)®C)®D A® (B® (C®D))

04A®B,C,D\; %A,];C@D

(A®B)® (C®D)

Coherence theorem for monoidal categories: If the pentagon and
triangle equations hold, so does any well-typed equation built from

a, A, p and their inverses. (to appreciate this, try to prove A\; = p;!)
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Set is monoidal

>

>

A

fl

tensor product is Cartesian product of sets b
tensor unit is a chosen singleton set {e} e,  ta))

. ~ “rs.c x ~C)
associators (A x B) x C—22% A x (B x C) 1A BIm C 23 A (B €
defined by ((a,b),¢) — (a, (b,c)) (oo j j/, o

. A (A'B)xC ' — f x(g'~c
left unitors I x A ~4> A defined by (e,a) — a g

(a8),c) —> (a,(40)
right unitors A x I 4+ A defined by (a,e) —a |
(tfegs) he) [£a,(54,¢2))

Other tensor products exist, this one is canonical for classical theory
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= 7
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(W/é) Ccom Lt regondld As & cc\/gjw?_,
Lyech a.  NEN
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.
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Set is monoidal

| 4

>

tensor product is Cartesian product of sets
tensor unit is a chosen singleton set {e}

associators (A x B) x C—22% A x (B x C)

defined by ((a,b),c) — (a, (b,c))
left unitors I x A4 A defined by (e,a) — a

right unitors A x I -4 A defined by (a, e)  a

Other tensor products exist, this one is canonical for classical theory
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(Az) A Reann

j.(/?/ﬁ) - S¢ bl
L

(A',@') Al ’ S (A=B8) s (A'x8)

» tensor product is Cartesian product of sets {(s,s) (a129)1 (5 7¢ & au
on morphisms: (a,c)(R x S)(b,d) if and only if aRb and c¢Sd les cs

Rel is monoidal

» tensor unit is a chosen singleton set = {e}

> associators (A x B) x C—22% A x (B x C) are the relations

defined by ((a,b),c) ~ (a, (b,c))
> left unitors I x A4 A are the relations defined by (e,a) ~a
» right unitors A x I -?4 A are the relations defined by (a, ¢) ~ a

This is not a categorical product in Rel
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Lioopw H &h' = spa {/m'/un}
_)[ f' ! ) Aerp
~/ l L/f"/ Ghets e sty
K !
Koek!

Hilb is monoidal

» tensor product ®: Hilb x Hilb — Hilb is tensor product
» tensor unit [ is the one-dimensional Hilbert space C

» associators (H®J) @ K5 H® (J ®K)
defined by u@v)@w—u® (vew)

> left unitors C ® H % H defined by 1 ® u — u
» right unitors H ® C 25 H defined byu ® 1 +— u

Other tensor products exist, this one is canonical for quantum theory
,’}®‘.)l - Hos b <(11‘7)) (M'V)>Hm = <)L)M>)7+(,1)V)H‘

o
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" Interchange

Any morphisms A LB, B4 C, D EandE 2, F in a monoidal
category satisfy the interchange law:

gof)®(joh)=(g®j)o(f®h)
Proof:
(gof)®@(joh) =®(gof,joh)
=®((g,j) o (f,h)) (composition in C x C)
= (®(g.,7)) o (®(f,h))  (functoriality of ®)
=(g®Jj)o(f®h)
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Graphical calculus

For morphisms A S.BandC E.D,draw A ® cL%, B oD as:
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Graphical calculus

For morphisms A S.BandC E.D,draw A ® cL%, B oD as:

The tensor unit I is drawn as the empty diagram:
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Graphical calculus
For morphisms A S.BandC E.D,draw A ® cL%, B oD as:

The tensor unit I is drawn as the empty diagram:

Unitors and associators are also not depicted:

A PA QAB,C
Coherence is essential for the graphical calculus: as there can only be

a single morphism built from their components of any given type, it

doesn’t matter that their graphical calculus encodes no information
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Graphical calculus

Interchange law trivialises:

(gof)®(Goh) = (g®j)o(f®h)
| o] Ll
Al lml T o

Apparent complexity of monoidal categories just complexity of

geometry of the plane. In geometrical notation complexity vanishes.
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Isotopy

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

» diagrams remain confined to a rectangular region of the plane
» input and output wires terminate at lower and upper boundaries
> components never intersect

(Height of diagrams may change, and input/output wires may slide
horizontally along boundary, but may not change order)
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms <= it holds graphically up to planar isotopy
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms <= it holds graphically up to planar isotopy

» P(f,g) = ‘under the axioms of a monoidal category, f = g
» Q(f,g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that P(f,g) = Q(f,g) for all such f and g
(easy to prove: just check each axiom)

Completeness is the converse: Q(f,g) = P(f,g) for such f and g

(harder: must show that planar isotopy is generated by finite set of
moves, each being implied by the monoidal axioms)
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States

Cannot ‘look inside’ object to see elements, must use morphisms.
A state of an object A is a morphism I — A.

A
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States

Cannot ‘look inside’ object to see elements, must use morphisms.
A state of an object A is a morphism I — A.

A

v

» In Hilb: linear functions C i H, so elements of H q[ (2)=2-40)
» In Set: functions {e} — A, so elements of A
> In Rel: relations {e} £ A, so subsets of A
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Effects e9 Seb  Alo] oly au!
el : A Lyl Subsels o A
//ﬂ[é: H —C veddors i, H
An effect on an object A is a morphism A —1

Interpret effect as observation that a system has some property
States, effects, and other morphisms, build up histories:

A

/o\
N/
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Joint states

A morphism [ -+ A ® B is a joint state of A and B.

A B

=

—1
It is a product state when of the form I B ® 1% A @ B:

It is entangled when not a product state.
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Joint states: examples

» In Set:

» joint states of A and B are elements of A x B
» product states are elements (a,b) € A x B
» entangled states don’t exist
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Joint states: examples

> In Set:
» joint states of A and B are elements of A x B
» product states are elements (a,b) € A X B
> entangled states don’t exist

» In Rel: P A> 8
» joint states of A and B are subsets of A x B " =

» product states are ‘square’ subsets V. x W C A x B
» entangled states are subsets not of this form

)
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Joint states: examples

» In Set:

» joint states of A and B are elements of A x B
» product states are elements (a,b) € A X B
> entangled states don’t exist

» In Rel:

» joint states of A and B are subsets of A x B
» product states are ‘square’ subsets V. x W C A x B
» entangled states are subsets not of this form

we H
» In Hilb: ye K
> joint states of H and K are elements of H® K ey e Hakk

» product states are factorizable states
» entangled states are entangled states in the quantum sense

Lo (2e()+ (elBe Cract
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Summary

» Monoidal category: coherent tensor products
» Sound and complete graphical calculus
> States and effects: histories
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Summary A @

¢

A L b

» Monoidal category: coherent tensor products
» Sound and complete graphical calculus
> States and effects: histories
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