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Tensor products
Function f : U ◊ V W is bilinear when it is linear in each variable
Tensor product of vector spaces U and V is a vector space U � V with
bilinear f : U ◊ V U � V such that for every bilinear g : U ◊ V W

there exists unique linear h : U � V W such that g = h ⇥ f

U ◊ V U � V

W

(bilinear) f

(bilinear) g
h (linear)

Hilbert space with ⇤u� v|u� � v
�⌅ = ⇤u|u�⌅⇤v|v�⌅
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If H
f

H
� and K

g
K
� then f � g : H � K H

� � K
�

(f � g) =

�

⇥⇥⇥⇤

⌅
f11g

⇧ ⌅
f12g

⇧
· · ·

⌅
f1ng

⇧
⌅
f21g

⇧ ⌅
f22g

⇧
. . .

⌅
f2ng

⇧

...
...

. . .
...⌅

fm1g
⇧ ⌅

fm2g
⇧

. . .
⌅
fmng

⇧

⌃

⌥⌥⌥�
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Monoidal categories

Category theory describes systems and processes:
� physical systems, and physical processes governing them;
� data types, and algorithms manipulating them;
� algebraic structures, and structure-preserving functions;
� logical propositions, and implications between them.
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Monoidal categories

Category theory describes systems and processes:
� physical systems, and physical processes governing them;
� data types, and algorithms manipulating them;
� algebraic structures, and structure-preserving functions;
� logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:
� independent physical systems evolve simultaneously;
� running computer algorithms in parallel;
� products or sums of algebraic or geometric structures;
� using separate proofs of P and Q to construct a proof of the

conjunction (P and Q).
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Why so serious?

� Let A, B and C be processes, and let � be parallel composition
� What relationship should there be between these systems?

(A� B)� C A� (B� C)

� It’s not right to say they’re equal, since even just for sets,

(S ◊ T)◊ U ⇧= S ◊ (T ◊ U).

� Maybe they should be isomorphic — but then what equations

should these isomorphisms satisfy?
� How do we treat trivial systems?
� What should the relationship be between A� B and B� A?
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Monoidal category
is a category C equipped with the following data:
� a tensor product functor

� : C◊C C;

� a unit object

I ⌃Ob(C);

� an associator natural isomorphism

(A� B)� C
�A,B,C

A� (B� C);

� a left unitor natural isomorphism

I � A
⇥A

A;

� and a right unitor natural isomorphism

A� I
⇤A

A.
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Monoidal category
must satisfy triangle and pentagon equations:

(A� I)� B A� (I � B)

A� B

�A � idB idA � ⇥B

⇤A,I,B

⌅
(A� B)� C

⇧
� D

⌅
A� (B� C)

⇧
� D A�

⌅
(B� C)� D

⇧

A�
⌅
B� (C � D)

⇧

(A� B)� (C � D)

⇤A,B,C � idD

⇤A,B�C,D

idA � ⇤B,C,D

⇤A�B,C,D ⇤A,B,C�D
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Monoidal category
must satisfy triangle and pentagon equations:

(A� I)� B A� (I � B)

A� B

�A � idB idA � ⇥B

⇤A,I,B

⌅
(A� B)� C

⇧
� D

⌅
A� (B� C)

⇧
� D A�

⌅
(B� C)� D

⇧

A�
⌅
B� (C � D)

⇧

(A� B)� (C � D)

⇤A,B,C � idD

⇤A,B�C,D

idA � ⇤B,C,D

⇤A�B,C,D ⇤A,B,C�D

Coherence theorem for monoidal categories: If the pentagon and
triangle equations hold, so does any well-typed equation built from
⇤, ⇥, � and their inverses. (to appreciate this, try to prove ⇥I = �I!)
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Set is monoidal

� tensor product is Cartesian product of sets

� tensor unit is a chosen singleton set {•}

� associators (A ◊ B)◊ C
�A,B,C

A ◊ (B ◊ C)

defined by
⌅
(a, b), c

⇧
7⌥

⌅
a, (b, c)

⇧

� left unitors I ◊ A
⇥A

A defined by (•, a) 7⌥ a

� right unitors A ◊ I
⇤A

A defined by (a, •) 7⌥ a

Other tensor products exist, this one is canonical for classical theory
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Rel is monoidal

� tensor product is Cartesian product of sets
on morphisms: (a, c)(R ◊ S)(b, d) if and only if aRb and cSd

� tensor unit is a chosen singleton set = {•}

� associators (A ◊ B)◊ C
�A,B,C

A ◊ (B ◊ C) are the relations
defined by

⌅
(a, b), c

⇧
�

⌅
a, (b, c)

⇧

� left unitors I ◊ A
⇥A

A are the relations defined by (•, a) � a

� right unitors A ◊ I
⇤A

A are the relations defined by (a, •) � a

This is not a categorical product in Rel
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Hilb is monoidal

� tensor product � : Hilb ◊ Hilb Hilb is tensor product

� tensor unit I is the one-dimensional Hilbert space C

� associators (H � J)� K
�H,J,K

H � (J � K)

defined by (u� v)� w 7⌥ u� (v� w)

� left unitors C� H
⇥H

H defined by 1� u 7⌥ u

� right unitors H � C ⇤H
H defined by u� 1 7⌥ u

Other tensor products exist, this one is canonical for quantum theory
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Interchange

Any morphisms A
f

B, B
g

C, D
h

E and E
j

F in a monoidal
category satisfy the interchange law:

(g ⇥ f)� (j ⇥ h) = (g� j) ⇥ (f � h)

Proof:

(g ⇥ f)� (j ⇥ h) = �(g ⇥ f , j ⇥ h)

= �
⌅
(g, j) ⇥ (f , h)

⇧
(composition in C ◊ C)

=
⌅
�(g, j)

⇧
⇥
⌅
�(f , h)

⇧
(functoriality of �)

= (g� j) ⇥ (f � h)

10 / 19



Graphical calculus
For morphisms A

f
B and C

g
D, draw A� C

f⇥g
B� D as:

B

A

D

C

f g
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B

A

D

C

f g

The tensor unit I is drawn as the empty diagram:
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Graphical calculus
For morphisms A

f
B and C

g
D, draw A� C

f⇥g
B� D as:

B

A

D

C

f g

The tensor unit I is drawn as the empty diagram:

Unitors and associators are also not depicted:

A A A B C

⇥A �A ⇤A,B,C

Coherence is essential for the graphical calculus: as there can only be
a single morphism built from their components of any given type, it
doesn’t matter that their graphical calculus encodes no information
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Graphical calculus

Interchange law trivialises:

(g ⇥ f)� (j ⇥ h) = (g� j) ⇥ (f � h)

f

g

h

j

C

B

A

F

E

D

�

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

�

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇤

⌃

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥�

⌃

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥�

=

⌃ ⌥ ⌥ ⌥ ⌥ ⌥ ⌥ �

⌃⌥⌥⌥⌥⌥⌥�

⌃ ⌥ ⌥ ⌥ ⌥ ⌥ ⌥ �

⌃⌥⌥⌥⌥⌥⌥�

f

g

h

j

C

B

A

F

E

D

Apparent complexity of monoidal categories just complexity of
geometry of the plane. In geometrical notation complexity vanishes.
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Isotopy

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:
� diagrams remain confined to a rectangular region of the plane
� input and output wires terminate at lower and upper boundaries
� components never intersect

f

gh iso
=

f

g

h

not
iso
⇧=

f

g

h

(Height of diagrams may change, and input/output wires may slide
horizontally along boundary, but may not change order)
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms  ⌦ it holds graphically up to planar isotopy
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Correctness

Theorem: well-formed equation f = g in monoidal category follows
from the axioms  ⌦ it holds graphically up to planar isotopy

� P(f , g) = ‘under the axioms of a monoidal category, f = g’
� Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that P(f , g)⌦ Q(f , g) for all such f and g

(easy to prove: just check each axiom)

Completeness is the converse: Q(f , g)⌦ P(f , g) for such f and g

(harder: must show that planar isotopy is generated by finite set of
moves, each being implied by the monoidal axioms)
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States

Cannot ‘look inside’ object to see elements, must use morphisms.
A state of an object A is a morphism I A.

a

A
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States

Cannot ‘look inside’ object to see elements, must use morphisms.
A state of an object A is a morphism I A.

a

A

� In Hilb: linear functions C H, so elements of H

� In Set: functions {•} A, so elements of A

� In Rel: relations {•} R
A, so subsets of A
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Effects

An effect on an object A is a morphism A I

Interpret effect as observation that a system has some property
States, effects, and other morphisms, build up histories:

b

A

a

f
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Joint states

A morphism I
c

A� B is a joint state of A and B.

c

BA

It is a product state when of the form I
⇥�1

I
I � I

a⇥b
A� B:

c

BA

=

a b

BA

It is entangled when not a product state.

17 / 19



Joint states: examples

� In Set:
� joint states of A and B are elements of A ◊ B

� product states are elements (a, b) ⌃ A ◊ B

� entangled states don’t exist
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Joint states: examples

� In Set:
� joint states of A and B are elements of A ◊ B

� product states are elements (a, b) ⌃ A ◊ B

� entangled states don’t exist

� In Rel:
� joint states of A and B are subsets of A ◊ B

� product states are ‘square’ subsets V ◊ W ↵ A ◊ B

� entangled states are subsets not of this form

� In Hilb:
� joint states of H and K are elements of H � K

� product states are factorizable states
� entangled states are entangled states in the quantum sense
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Summary

� Monoidal category: coherent tensor products
� Sound and complete graphical calculus
� States and effects: histories
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