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Overview

I Monoids: multiplication of states
I Comonoids: ‘copying’ of states
I Cloning: prove no-cloning and no-deleting
I Products: characterize when tensor product is product

2 / 25



Copying

What does copying object A mean?

Type should be A
d

A ⌦ A

I shouldn’t matter if we switch both output copies
I if copying twice, shouldn’t matter if take first or second copy
I output should equal input: uses deletion A
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d

cocommutativity coassociativity counitality

Triple (A, d, e) is called (cocommutative) comonoid.
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Example comonoids

I In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7! (a, a) and counit a 7! •, which is cocommutative.

I In Rel, any group G forms a comonoid with
comultiplication g ⇠ (h, h�1

g) and counit 1 ⇠ •.
Counitality: LHS is g ⇠ h where h

�1
g = 1, RHS is g ⇠ 1�1

g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ⇠ (h�1

g, h), RHS is g ⇠ (k, k�1
g).

I In FHilb, basis {ei} for a Hilbert space gives a cocommutative
comonoid, with comultiplication ei 7! ei ⌦ ei and counit ei 7! 1.
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Monoids
Dually:

m

=

m m

m

=

m

m u

m

= =
u

m

commutativity associativity unitality

Triple (A,m, u) is (commutative) monoid. Examples:
I Tensor unit I, with multiplication ⇢I = �I and unit idI.
I A monoid in Set is just an ordinary monoid; e.g. any group.
I A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1, 1, . . . , 1).
E.g. vector space of n-by-n matrices with matrix multiplication.
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Homomorphisms

Draw comultiplication as , counit as , multiplication as , unit as .

Choosing bases {di} and {ej} makes H and K in FHilb comonoids.

Functions {di} {ej} respect comultiplication and counit.

A comonoid homomorphism (A, , ) (B, , ) is A
f

B with:

f
=

f f

f
=

Dually: monoid homomorphism.

Given monoidal category, can build new category of (co)monoids
and homomorphisms.
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Example homomorphisms

I In Set, any function A
f

B is a comonoid homomorphism:
(f ⇥ f)(a, a) =

�
f(a), f(a)

�
, and f(a) = •.

I In Rel, any surjective homomorphism G
f

H of groups is a
comonoid homomorphism. Preservation of comultiplication:
LHS is g ⇠ (h, h�1

f(g)), RHS is g ⇠ (f(g0), f(g0)�1
f(g)).

I In FHilb, any function {di}
f {ej} between bases extends

linearly to a comonoid homomorphism:
d(f(di)) = f(di)⌦ f(di) and e(f(dj)) = 1 = e(dj).
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Product of monoids
Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Examples:
I In Set, product comonoid on A,B is unique comonoid on A ⇥ B.

I In Rel, the product comonoid of groups G and H is comonoid of
G ⇥ H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

I In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⌦ ej} of H ⌦ K.
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Dagger

Monoidal dagger category has duality between monoids and
comonoids: (A, d, e) is a comonoid if and only if (A, d†, e†) is a
monoid.

Example:
I In Rel: comultiplication g ⇠ (h, h�1

g) for group G turns into
multiplication (g, h) ⇠ gh.
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Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.

Can handle this using names and conames. E.g.:

FHilb(H,K) = {H
f

K | f linear}

is vector space with pointwise operations (f + g)(x) = f(x) + g(x),
Hilbert space with trace inner product hf |gi = Tr(f † � g).

To transform morphisms, encode them as vectors in function spaces.
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Matrices

One of most important features of matrices: they can be multiplied.
In other words, linear maps Cn Cn can be composed.
Using closure, can internalize this: the vector space Mn of matrices is
a monoid that lives in the same category as Cn.

More generally, if an object A in a monoidal category has a dual A
⇤,

then operators A
f

A correspond bijectively to states I
pfq

A
⇤ ⌦ A.

Composition A
g�f

A of operators transfers to states I
pg�fq

A
⇤ ⌦ A:

pgq pfq
=

pg � fq

So A
⇤ ⌦ A canonically becomes monoid.
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Pair of pants

If A a A
⇤ in monoidal category, then A

⇤ ⌦ A is a monoid:

A

A

A A A

A

A A

Proof.

= =

=
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Matrix algebras

Example: pair of pants on Cn in FHilb is the algebra Mn of n-by-n
matrices under matrix multiplication.

Proof: Fix basis {|ii} for A = Cn, so A
⇤ ⌦ A has basis {hj|⌦ |ii}.

Define map A
⇤ ⌦ A Mn by mapping hj|⌦ |ii to the matrix eij

with a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=


hi|⌦ |li if j = k

0 if j 6= k

�
7�!


eil if j = k

0 if j 6= k

�
= eijekl
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Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.

Symmetric group Sym(A): bijections A A under composition.
Embedding R : G Sym(G) is regular representation g 7! Rg.

Rg(h) = g · h

Already works for monoids: any M is submonoid of Set(M,M).
Closure: instead of injective homomorphism M

R
Set(M,M),

consider relation M M
⇤ ⇥ M (latter with pair of pants).

Abstract embedding of (M, , ) into M a M
⇤:

R =

14 / 25
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Cayley’s theorem
Any monoid (A, , ) in a monoidal category with A a A

⇤ has monoid
homomorphism to (A⇤ ⌦ A, , ) with right inverse.

R =

Proof. R preserves units:

R = =

R preserves multiplication:

R

= = =
R R

Finally, R has a right inverse .
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Uniform deleting

Counit A
e

I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

A monoidal category has uniform deleting if there is a natural
transformation A

eA�! I with eI = idI, such that:

A ⌦ B

I ⌦ I I

eA ⌦ eB eA⌦B

�I

Uniform deleting possible if and only if I is terminal.

Proof. Uniform deleting gives a morphism A
eA

I for each object A.
Naturality and eI = idI then show any morphism A

f
I equals eA.

Conversely, if I is terminal, choose eA : A I uniquely.
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No-deleting theorem

A preorder is a category that has at most one morphism A B for
any pair of objects A,B.

Preorders are degenerate, with only process of each type.

Theorem: if a monoidal category with duals has uniform deleting,
then it is a preorder.

Proof. Let A
f ,g�! B be morphisms. Naturality of e gives:

A ⌦ B
⇤

I

I I

eA⌦B⇤

xfy idI

eI = idI

So xfy = eA⌦B⇤ , and similarly xgy = eA⌦B⇤ . Hence f = g.
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Uniform copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

A braided monoidal category has uniform copying if there is a
natural transformation A

dA
A ⌦ A with dI = ⇢I, satisfying

cocommutativity and coassociativity, and:

A B

A BB A

dA dB =

A B BA

BA

dA⌦B

Naturality and dI = ⇢I look like this for arbitrary A
f

B:

A

B B

dA

f f

=

A

B B

f

dB

dI =
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Copying states

Example: Set has uniform copying maps a 7! (a, a):
d1(•) = (•, •) = ⇢1(•)
both maps A ⇥ B A ⇥ B ⇥ A ⇥ B are (a, b) 7! (a, b, a, b)

In a braided monoidal category, a state I
u

A is copyable with respect
to a map A

dA
A ⌦ A when:

u

dA

=
u u

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dA � u = (u ⌦ u) � ⇢I for each state I

u
A.

19 / 25



Copying states

Example: Set has uniform copying maps a 7! (a, a):
d1(•) = (•, •) = ⇢1(•)
both maps A ⇥ B A ⇥ B ⇥ A ⇥ B are (a, b) 7! (a, b, a, b)

In a braided monoidal category, a state I
u

A is copyable with respect
to a map A

dA
A ⌦ A when:

u

dA

=
u u

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dA � u = (u ⌦ u) � ⇢I for each state I

u
A.

19 / 25



Copying states

Example: Set has uniform copying maps a 7! (a, a):
d1(•) = (•, •) = ⇢1(•)
both maps A ⇥ B A ⇥ B ⇥ A ⇥ B are (a, b) 7! (a, b, a, b)

In a braided monoidal category, a state I
u

A is copyable with respect
to a map A

dA
A ⌦ A when:

u

dA

=
u u

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dA � u = (u ⌦ u) � ⇢I for each state I

u
A.

19 / 25



Copying states

Example: Set has uniform copying maps a 7! (a, a):
d1(•) = (•, •) = ⇢1(•)
both maps A ⇥ B A ⇥ B ⇥ A ⇥ B are (a, b) 7! (a, b, a, b)

In a braided monoidal category, a state I
u

A is copyable with respect
to a map A

dA
A ⌦ A when:

u

dA

=
u u

In braided monoidal category with uniform copying, any state is
copyable.

Proof. If there is uniform copying, then, by naturality of the copying
maps, we have dA � u = (u ⌦ u) � ⇢I for each state I

u
A.

19 / 25



Duals vs copying
If a braided monoidal category with duals has uniform copying:

A
⇤

A A
⇤

A

=

A
⇤

A A
⇤

A

Proof. First, consider the following equality (⇤):

A
⇤

A A
⇤

A

=
A
⇤

A A
⇤

A

dI

= dA⇤⌦A = dA⇤ dA

Then:

A
⇤

A A
⇤

A (⇤)
= dA⇤ dA

=
dA⇤ dA

(⇤)
=

A
⇤

A A
⇤

A
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Duals vs copying

In a braided monoidal category with duals and uniform copying:

A A

A A

=
A A

A A

Proof.

A A

A A

= =
iso
=

A A

A A
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No-cloning theorem
If a braided monoidal category with duals has uniform copying,
every endomorphism is a multiple of the identity, f = Tr(f) • id:

f =
f

Proof.

f =

A

A

f
iso
=

A

A

f

=
f
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No-cloning theorem
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Products
The following are equivalent for a symmetric monoidal category:
I tensor products are products and the tensor unit is terminal
I it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique A
eA

I and dA =
⇣

idA

idA

⌘
provide uniform

copying and deleting.

For converse, need to prove A ⌦ B is product of A,B.
For C

f
A and C

g
B, define

⇣
f

g

⌘
= (f ⌦ g) � d

pA = ⇢A � (idA ⌦ eB) : A ⌦ B A

pB = �B � (eA ⌦ idB) : A ⌦ B B
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Proof. Suppose C
m

A ⌦ B satisfies pA � m = f and pB � m = g.

Then:

⇣
f

g

⌘
=

f

dC

g

=

eAeB

m

dC

m =

eAeB

dA⌦B

m

=

eAeB

dA

m

dB
= m

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

pB �
⇣

f

g

⌘
=

eA

f

dC

g
=

eC

dC

g

= g

A similar result holds for g.
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Summary

I Monoids: multiplication on states
I Comonoids: ‘copying’ of states
I Closure: operators form monoids
I Cloning: no-cloning and no-deleting
I Products: characterize when tensor product is product

Next week: interaction between monoids and comonoids
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