Introduction to Quantum Programming and Semantics

Week 6: Monoids and comonoids

Chris Heunen

THE UNIVERSITY of EDINBURGH
informatics

Overview

- Monoids: multiplication of states
- Comonoids: 'copying' of states
- Cloning: prove no-cloning and no-deleting
- Products: characterize when tensor product is product

Copying

What does copying object A mean?

Copying

What does copying object A mean? Type should be $A \xrightarrow{d} A \otimes A$

Copying

What does copying object A mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies

cocommutativity

Copying

What does copying object A mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- if copying twice, shouldn't matter if take first or second copy

cocommutativity

coassociativity

Copying

What does copying object A mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- if copying twice, shouldn't matter if take first or second copy
- output should equal input: uses deletion $A \xrightarrow{e} I$

cocommutativity

coassociativity

counitality

Copying

What does copying object A mean? Type should be $A \xrightarrow{d} A \otimes A$

- shouldn't matter if we switch both output copies
- if copying twice, shouldn't matter if take first or second copy
- output should equal input: uses deletion $A \xrightarrow{e} I$

Triple (A, d, e) is called (cocommutative) comonoid.

Example comonoids

- In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication $a \mapsto(a, a)$ and counit $a \mapsto \bullet$, which is cocommutative.

Example comonoids

- In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication $a \mapsto(a, a)$ and counit $a \mapsto \bullet$, which is cocommutative.

In Rel, any group G forms a comonoid with $\left(C_{i}, 1\right)=\left(\mathbb{Z}_{3}\right.$,
comultiplication $g \sim\left(h, h^{-1} g\right)$ and counit $1 \sim \bullet$.
Counitality: LHS is $g \sim h$ where $h^{-1} g=1$, RHS is $g \sim 1^{-1} g$. The comonoid is cocommutative iff the group is abelian. Cocommutativity: LHS is $g \sim\left(h^{-1} g, h\right)$, RHS is $g \sim\left(k, k^{-1} g\right)$.

Example comonoids

- In Set, the tensor product is a Cartesian product. Every object carries a unique comonoid with comultiplication $a \mapsto(a, a)$ and counit $a \mapsto \bullet$, which is cocommutative.
- In Rel, any group G forms a comonoid with comultiplication $g \sim\left(h, h^{-1} g\right)$ and counit $1 \sim \bullet$. Counitality: LHS is $g \sim h$ where $h^{-1} g=1$, RHS is $g \sim 1^{-1} g$. The comonoid is cocommutative iff the group is abelian. Cocommutativity: LHS is $g \sim\left(h^{-1} g, h\right)$, RHS is $g \sim\left(k, k^{-1} g\right)$.
- In FHilb, basis $\left\{e_{i}\right\}$ for a Hilbert space gives a cocommutative comonoid, with comultiplication $e_{i} \mapsto e_{i} \otimes e_{i}$ and counit $e_{i} \mapsto 1$.

Monoids

Dually:

commutativity

associativity

unitality

Monoids

Dually:

commutativity

associativity

unitality

Triple (A, m, u) is (commutative) monoid.

Monoids

Dually:

commutativity

associativity

unitality

Triple (A, m, u) is (commutative) monoid. Examples:

- Tensor unit I, with multiplication $\rho_{I}=\lambda_{I}$ and unit id_{I}.

Monoids

Dually:

commutativity

associativity

unitality

Triple (A, m, u) is (commutative) monoid. Examples:

- Tensor unit I, with multiplication $\rho_{I}=\lambda_{I}$ and unit id_{I}.
- A monoid in Set is just an ordinary monoid; e.g. any group.

Monoids

Dually:

commutativity

associativity

unitality

Triple (A, m, u) is (commutative) monoid. Examples:

- Tensor unit I, with multiplication $\rho_{I}=\lambda_{I}$ and unit id_{I}.
- A monoid in Set is just an ordinary monoid; e.g. any group.
- A monoid in Vect is an algebra: a set where we can add vectors and multiply with scalars, and also multiply vectors bilinearly. E.g. \mathbb{C}^{n} under pointwise multiplication and unit $(1,1, \ldots, 1)$. E.g. vector space of n-by- n matrices with matrix multiplication.

Homomorphisms

Draw comultiplication as φ, counit as ρ, multiplication as ϕ, unit as ϕ.

Homomorphisms

Draw comultiplication as φ, counit as ρ, multiplication as ϕ, unit as ϕ. Choosing bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ makes H and K in FHilb comonoids.

Homomorphisms

Draw comultiplication as φ, counit as ρ, multiplication as ϕ, unit as ϕ. Choosing bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ makes H and K in FHilb comonoids.
Functions $\left\{d_{i}\right\} \rightarrow\left\{e_{j}\right\}$ respect comultiplication and counit.

Homomorphisms

Draw comultiplication as φ^{\prime}, counit as ρ, multiplication as ϕ, unit as ϕ.
Choosing bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ makes H and K in FHilb comonoids.
Functions $\left\{d_{i}\right\} \rightarrow\left\{e_{j}\right\}$ respect comultiplication and counit.
A comonoid homomorphism $(A, \varphi, \varphi) \rightarrow(B, \varphi, \varphi)$ is $A \xrightarrow{f} B$ with:

Homomorphisms

Draw comultiplication as φ^{\prime}, counit as ρ, multiplication as ϕ, unit as ϕ.
Choosing bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ makes H and K in FHilb comonoids.
Functions $\left\{d_{i}\right\} \rightarrow\left\{e_{j}\right\}$ respect comultiplication and counit.
A comonoid homomorphism $(A, \varphi, \varphi) \rightarrow(B, \varphi, \varphi)$ is $A \xrightarrow{f} B$ with:

Dually: monoid homomorphism.

Homomorphisms

Draw comultiplication as φ^{\prime}, counit as ρ, multiplication as ϕ, unit as ϕ.
Choosing bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ makes H and K in FHilb comonoids.
Functions $\left\{d_{i}\right\} \rightarrow\left\{e_{j}\right\}$ respect comultiplication and counit.
A comonoid homomorphism $(A, \varphi, \varphi) \rightarrow(B, \varphi, \varphi)$ is $A \xrightarrow{f} B$ with:

Dually: monoid homomorphism.
Given monoidal category, can build new category of (co)monoids and homomorphisms.

Example homomorphisms

- In Set, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a)=(f(a), f(a))$, and $f(a)=\bullet$.

Example homomorphisms

- In Set, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a)=(f(a), f(a))$, and $f(a)=\bullet$.
- In Rel, any surjective homomorphism $G \stackrel{f}{\rightarrow} H$ of groups is a comonoid homomorphism. Preservation of comultiplication: LHS is $g \sim\left(h, h^{-1} f(g)\right)$, RHS is $g \sim\left(f\left(g^{\prime}\right), f\left(g^{\prime}\right)^{-1} f(g)\right)$.

Example homomorphisms

- In Set, any function $A \xrightarrow{f} B$ is a comonoid homomorphism: $(f \times f)(a, a)=(f(a), f(a))$, and $f(a)=\bullet$.
- In Rel, any surjective homomorphism $G \xrightarrow{f} H$ of groups is a comonoid homomorphism. Preservation of comultiplication: LHS is $g \sim\left(h, h^{-1} f(g)\right)$, RHS is $g \sim\left(f\left(g^{\prime}\right), f\left(g^{\prime}\right)^{-1} f(g)\right)$.
- In FHilb, any function $\left\{d_{i}\right\} \xrightarrow{f}\left\{e_{j}\right\}$ between bases extends linearly to a comonoid homomorphism: $d\left(f\left(d_{i}\right)\right)=f\left(d_{i}\right) \otimes f\left(d_{i}\right)$ and $e\left(f\left(d_{j}\right)\right)=1=e\left(d_{j}\right)$.

Product of monoids

Can combine two (co)monoids to single one using braiding:

Product of monoids

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.

Product of monoids

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.
Examples:

- In Set, product comonoid on A, B is unique comonoid on $A \times B$.

Product of monoids

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.
Examples:

- In Set, product comonoid on A, B is unique comonoid on $A \times B$.
- In Rel, the product comonoid of groups G and H is comonoid of $G \times H$ with multiplication $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$.

Product of monoids

Can combine two (co)monoids to single one using braiding:

If braiding is symmetry: categorical product.
Examples:

- In Set, product comonoid on A, B is unique comonoid on $A \times B$.
- In Rel, the product comonoid of groups G and H is comonoid of $G \times H$ with multiplication $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$.
- In FHilb, the product of comonoids on H and K that copy bases $\left\{d_{i}\right\}$ and $\left\{e_{j}\right\}$ is the comonoid copying basis $\left\{d_{i} \otimes e_{j}\right\}$ of $H \otimes K$.

Dagger

Monoidal dagger category has duality between monoids and comonoids: (A, d, e) is a comonoid if and only if $\left(A, d^{\dagger}, e^{\dagger}\right)$ is a monoid.

Dagger

Monoidal dagger category has duality between monoids and comonoids: (A, d, e) is a comonoid if and only if $\left(A, d^{\dagger}, e^{\dagger}\right)$ is a monoid.

Example:

- In Rel: comultiplication $g \sim\left(h, h^{-1} g\right)$ for group G turns into multiplication $(g, h) \sim g h$.

Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.

Closure

Morphisms transform input into output.
But sometimes want to transform morphisms into morphisms.
Can handle this using names and conames. E.g.:

$$
\operatorname{FHilb}(H, K)=\{H \xrightarrow{f} K \mid f \text { linear }\}
$$

is vector space with pointwise operations $(f+g)(x)=f(x)+g(x)$, Hilbert space with trace inner product $\langle f \mid g\rangle=\operatorname{Tr}\left(f^{\dagger} \circ g\right)$.

To transform morphisms, encode them as vectors in function spaces.

Matrices

One of most important features of matrices: they can be multiplied. In other words, linear maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ can be composed. Using closure, can internalize this: the vector space \mathbb{M}_{n} of matrices is a monoid that lives in the same category as \mathbb{C}^{n}.

Matrices

One of most important features of matrices: they can be multiplied. In other words, linear maps $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ can be composed. Using closure, can internalize this: the vector space \mathbb{M}_{n} of matrices is a monoid that lives in the same category as \mathbb{C}^{n}.
More generally, if an object A in a monoidal category has a dual A^{*}, then operators $A \xrightarrow{f} A$ correspond bijectively to states $I \xrightarrow{\ulcorner f\urcorner} A^{*} \otimes A$. Composition $A \xrightarrow{\text { gof }} A$ of operators transfers to states $I \xrightarrow{\ulcorner\text { 「of }\urcorner} A^{*} \otimes A$:

So $A^{*} \otimes A$ canonically becomes monoid.

Pair of pants

If $A \dashv A^{*}$ in monoidal category, then $A^{*} \otimes A$ is a monoid:

$$
=\ln \cap 1
$$

Pair of pants

If $A \dashv A^{*}$ in monoidal category, then $A^{*} \otimes A$ is a monoid:

Proof.

Matrix algebras

Example: pair of pants on \mathbb{C}^{n} in FHilb is the algebra \mathbb{M}_{n} of n-by- n matrices under matrix multiplication.

Matrix algebras

Example: pair of pants on \mathbb{C}^{n} in $\mathbf{F H i l b}$ is the algebra \mathbb{M}_{n} of n-by- n matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A=\mathbb{C}^{n}$, so $A^{*} \otimes A$ has basis $\{\langle j| \otimes|i\rangle\}$.

Matrix algebras

Example: pair of pants on \mathbb{C}^{n} in FHilb is the algebra \mathbb{M}_{n} of n-by- n matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A=\mathbb{C}^{n}$, so $A^{*} \otimes A$ has basis $\{\langle j| \otimes|i\rangle\}$.
Define map $A^{*} \otimes A \rightarrow \mathbb{M}_{n}$ by mapping $\langle j| \otimes|i\rangle$ to the matrix $e_{i j}$ with a single entry 1 on row i and column j and zeroes elsewhere.

Matrix algebras

Example: pair of pants on \mathbb{C}^{n} in FHilb is the algebra \mathbb{M}_{n} of n-by- n matrices under matrix multiplication.

Proof: Fix basis $\{|i\rangle\}$ for $A=\mathbb{C}^{n}$, so $A^{*} \otimes A$ has basis $\{\langle j| \otimes|i\rangle\}$.
Define map $A^{*} \otimes A \rightarrow \mathbb{M}_{n}$ by mapping $\langle j| \otimes|i\rangle$ to the matrix $e_{i j}$ with a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

$$
\underset{i}{\succ \succ_{j}} \underset{l}{\rangle}=\left[\begin{array}{ll}
\langle i| \otimes|l\rangle & \text { if } j=k \\
0 & \text { if } j \neq k
\end{array}\right] \longmapsto\left[\begin{array}{ll}
e_{i l} & \text { if } j=k \\
0 & \text { if } j \neq k
\end{array}\right]=e_{i j} e_{k l}
$$

Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.

Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.
Symmetric group $\operatorname{Sym}(A)$: bijections $A \rightarrow A$ under composition. Embedding $R: G \rightarrow \operatorname{Sym}(G)$ is regular representation $g \mapsto R_{g}$.

$$
R_{g}(h)=g \cdot h
$$

Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.
Symmetric group $\operatorname{Sym}(A)$: bijections $A \rightarrow A$ under composition.
Embedding $R: G \rightarrow \operatorname{Sym}(G)$ is regular representation $g \mapsto R_{g}$.

$$
R_{g}(h)=g \cdot h
$$

Already works for monoids: any M is submonoid of $\operatorname{Set}(M, M)$.

Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.
Symmetric group $\operatorname{Sym}(A)$: bijections $A \rightarrow A$ under composition.
Embedding $R: G \rightarrow \operatorname{Sym}(G)$ is regular representation $g \mapsto R_{g}$.

$$
R_{g}(h)=g \cdot h
$$

Already works for monoids: any M is submonoid of $\operatorname{Set}(M, M)$. Closure: instead of injective homomorphism $M \xrightarrow{R} \operatorname{Set}(M, M)$, consider relation $M \rightarrow M^{*} \times M$ (latter with pair of pants).

Pair of pants are universal

Cayley: any group G is a subgroup of a symmetric one.
Symmetric group $\operatorname{Sym}(A)$: bijections $A \rightarrow A$ under composition.
Embedding $R: G \rightarrow \operatorname{Sym}(G)$ is regular representation $g \mapsto R_{g}$.

$$
R_{g}(h)=g \cdot h
$$

Already works for monoids: any M is submonoid of $\operatorname{Set}(M, M)$. Closure: instead of injective homomorphism $M \xrightarrow{R} \operatorname{Set}(M, M)$, consider relation $M \rightarrow M^{*} \times M$ (latter with pair of pants).

Abstract embedding of $(M$, 人, , $\delta)$ into $M \dashv M^{*}$:

$$
\frac{\psi \uparrow}{R}=\downarrow \nrightarrow \hat{\uparrow}
$$

Cayley's theorem

Any monoid $(A, \stackrel{\alpha}{\alpha}, \delta)$ in a monoidal category with $A \dashv A^{*}$ has monoid homomorphism to $\left(A^{*} \otimes A, / \cap \backslash, \smile\right)$ with right inverse.

Cayley's theorem

Any monoid $(A, \stackrel{\alpha}{\alpha}, \delta)$ in a monoidal category with $A \dashv A^{*}$ has monoid homomorphism to $\left(A^{*} \otimes A, / \cap \backslash, \cup\right)$ with right inverse.

Proof. R preserves units:

Cayley's theorem

Any monoid ($A, \stackrel{\alpha}{2}, \mathrm{\delta})$ in a monoidal category with $A \dashv A^{*}$ has monoid homomorphism to $\left.\left(A^{*} \otimes A, / \cap\right), \cup\right)$ with right inverse.

Proof. R preserves units:

$$
\frac{\downarrow \hat{i}}{\frac{\psi t}{R}}=\underset{\hat{0}}{\hat{\delta}}=\downarrow
$$

R preserves multiplication: associativity
Finally, R has a right inverse ρ.

Uniform deleting

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion systematically on every object?

Uniform deleting

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion systematically on every object?

A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_{A}} I$ with $e_{I}=\mathrm{id}_{I}$, such that:

Uniform deleting

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion systematically on every object?

A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_{A}} I$ with $e_{I}=\mathrm{id}_{I}$, such that:

Uniform deleting possible if and only if I is terminal.

Uniform deleting

Counit $A \xrightarrow{e} I$ tells us we can 'delete' A if we want to. What does it mean to have deletion systematically on every object?
A monoidal category has uniform deleting if there is a natural transformation $A \xrightarrow{e_{A}} I$ with $e_{I}=\operatorname{id}_{I}$, such that:

Uniform deleting possible if and only if I is terminal.
Proof. Uniform deleting gives a morphism $A \xrightarrow{e_{A}} I$ for each object A. Naturality and $e_{I}=\operatorname{id}_{I}$ then show any morphism $A \xrightarrow{f} I$ equals e_{A}. Conversely, if I is terminal, choose $e_{A}: A \rightarrow I$ uniquely.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.
Theorem: if a monoidal category with duals has uniform deleting, then it is a preorder.

No-deleting theorem

A preorder is a category that has at most one morphism $A \rightarrow B$ for any pair of objects A, B.

Preorders are degenerate, with only process of each type.
Theorem: if a monoidal category with duals has uniform deleting, then it is a preorder.
Proof. Let $A \xrightarrow{f, g} B$ be morphisms. Naturality of e gives:

$$
\begin{aligned}
& A \otimes B^{*} \xrightarrow{e_{A \otimes B^{*}}} I \\
& \stackrel{\lrcorner}{\downarrow} \stackrel{\mid}{\square} \xrightarrow{\downarrow} \quad \mathrm{e}_{I}=\mathrm{id}_{I} \quad \stackrel{\downarrow}{I}
\end{aligned}
$$

So $\llcorner f\lrcorner=e_{A \otimes B^{*}}$, and similarly $\llcorner g\lrcorner=e_{A \otimes B^{*}}$. Hence $f=g$.

Uniform copying

Question: what does it mean to copy objects systematically? Answer: copying must respect composition, tensor products.

Uniform copying

Question: what does it mean to copy objects systematically? Answer: copying must respect composition, tensor products.
A braided monoidal category has uniform copying if there is a natural transformation $A \xrightarrow{d_{A}} A \otimes A$ with $d_{I}=\rho_{I}$, satisfying cocommutativity and coassociativity, and:

Uniform copying

Question: what does it mean to copy objects systematically? Answer: copying must respect composition, tensor products.
A braided monoidal category has uniform copying if there is a natural transformation $A \xrightarrow{d_{A}} A \otimes A$ with $d_{I}=\rho_{I}$, satisfying cocommutativity and coassociativity, and:

Naturality and $d_{I}=\rho_{I}$ look like this for arbitrary $A \xrightarrow{f} B$:

$$
d_{I}=
$$

Copying states

Example: Set has uniform copying maps $a \mapsto(a, a)$:
$d_{1}(\bullet)=(\bullet \bullet)=\rho_{1}(\bullet)$
both maps $A \times B \rightarrow A \times B \times A \times B$ are $(a, b) \mapsto(a, b, a, b)$

Copying states

Example: Set has uniform copying maps $a \mapsto(a, a)$:

$$
d_{1}(\bullet)=(\bullet, \bullet)=\rho_{1}(\bullet)
$$

both maps $A \times B \rightarrow A \times B \times A \times B$ are $(a, b) \mapsto(a, b, a, b)$
In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_{A}} A \otimes A$ when:

Copying states

Example: Set has uniform copying maps $a \mapsto(a, a)$:

$$
d_{1}(\bullet)=(\bullet, \bullet)=\rho_{1}(\bullet)
$$

both maps $A \times B \rightarrow A \times B \times A \times B$ are $(a, b) \mapsto(a, b, a, b)$
In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_{A}} A \otimes A$ when:

In braided monoidal category with uniform copying, any state is copyable.

Copying states

Example: Set has uniform copying maps $a \mapsto(a, a)$:

$$
d_{1}(\bullet)=(\bullet, \bullet)=\rho_{1}(\bullet)
$$

both maps $A \times B \rightarrow A \times B \times A \times B$ are $(a, b) \mapsto(a, b, a, b)$
In a braided monoidal category, a state $I \xrightarrow{u} A$ is copyable with respect to a map $A \xrightarrow{d_{A}} A \otimes A$ when:

In braided monoidal category with uniform copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the copying maps, we have $d_{A} \circ u=(u \otimes u) \circ \rho_{I}$ for each state $I \xrightarrow{u} A$.

Duals vs copying

If a braided monoidal category with duals has uniform copying:

Duals vs copying

If a braided monoidal category with duals has uniform copying:

Proof. First, consider the following equality ($*$):

Duals vs copying

If a braided monoidal category with duals has uniform copying:

Proof. First, consider the following equality ($*$):

Duals vs copying

In a braided monoidal category with duals and uniform copying:

$$
\overbrace{A}^{A}=\left.\right|_{A} ^{A}
$$

Duals vs copying

In a braided monoidal category with duals and uniform copying:

$$
\overbrace{A}^{A}=\left.\right|_{A} ^{A}
$$

Proof.

No-cloning theorem

If a braided monoidal category with duals has uniform copying, every endomorphism is a multiple of the identity, $f=\operatorname{Tr}(f) \bullet$ id:

No-cloning theorem

If a braided monoidal category with duals has uniform copying, every endomorphism is a multiple of the identity, $f=\operatorname{Tr}(f) \bullet$ id:

Proof.

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- it has uniform copying and deleting, satisfying counitality

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique $A \xrightarrow{e_{A}} I$ and $d_{A}=\binom{\mathrm{id}_{A}}{\mathrm{id}_{A}}$ provide uniform copying and deleting.

Products

The following are equivalent for a symmetric monoidal category:

- tensor products are products and the tensor unit is terminal
- it has uniform copying and deleting, satisfying counitality

Proof. If cartesian, unique $A \xrightarrow{e_{A}} I$ and $d_{A}=\binom{\mathrm{id}_{A}}{\mathrm{id}_{A}}$ provide uniform copying and deleting.

For converse, need to prove $A \otimes B$ is product of A, B. For $C \xrightarrow{f} A$ and $C \xrightarrow{g} B$, define

$$
\begin{aligned}
\binom{f}{g} & =(f \otimes g) \circ d \\
p_{A} & =\rho_{A} \circ\left(\mathrm{id}_{A} \otimes e_{B}\right): A \otimes B \rightarrow A \\
p_{B} & =\lambda_{B} \circ\left(e_{A} \otimes \mathrm{id}_{B}\right): A \otimes B \rightarrow B
\end{aligned}
$$

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_{A} \circ m=f$ and $p_{B} \circ m=g$.

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_{A} \circ m=f$ and $p_{B} \circ m=g$. Then:

Hence mediating morphisms, if they exist, are unique.

Proof. Suppose $C \xrightarrow{m} A \otimes B$ satisfies $p_{A} \circ m=f$ and $p_{B} \circ m=g$. Then:

Hence mediating morphisms, if they exist, are unique.
Finally, we show the universal morphism has the right properties:

A similar result holds for g.

Summary

- Monoids: multiplication on states
- Comonoids: ‘copying' of states
- Closure: operators form monoids
- Cloning: no-cloning and no-deleting
- Products: characterize when tensor product is product Next week: interaction between monoids and comonoids

