Introduction to Quantum Programming and Semantics

Week 3: Symmetry, scalars, daggers

Chris Heunen

A braided monoidal category has a natural isomorphism

$$A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$$

A braided monoidal category has a natural isomorphism

$$A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$$

satisfying the hexagon equations

A braided monoidal category has a natural isomorphism

$$A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$$

satisfying the hexagon equations

$$A \otimes (B \otimes C) \xrightarrow{\sigma_{A,B \otimes C}} (B \otimes C) \otimes A \qquad (A \otimes B) \otimes C \xrightarrow{\sigma_{A \otimes B,C}} C \otimes (A \otimes B)$$

$$\downarrow \alpha_{A,B,C}^{-1} \qquad \qquad \downarrow \alpha_{A,B,C} \qquad \alpha_{C,A,B}^{-1} \qquad \qquad \downarrow \alpha_{A,B,C} \qquad \alpha_{C,A,B} \qquad (A \otimes B) \otimes C \qquad B \otimes (C \otimes A) \qquad A \otimes (B \otimes C) \qquad (C \otimes A) \otimes B$$

$$\downarrow \alpha_{A,B} \otimes \mathrm{id}_{C} \qquad \qquad \downarrow \mathrm{id}_{A} \otimes \sigma_{B,C} \qquad \qquad \downarrow \mathrm{id}_{A} \otimes \sigma_{B,C} \qquad \qquad \downarrow \alpha_{A,C} \otimes \mathrm{id}_{B} \qquad (A \otimes C) \otimes B$$

$$(B \otimes A) \otimes C \xrightarrow{\alpha_{B,A,C}} B \otimes (A \otimes C) \qquad A \otimes (C \otimes B) \xrightarrow{\alpha_{A,C,B}^{-1}} (A \otimes C) \otimes B$$

- ▶ In **Hilb**: $H \otimes K \xrightarrow{\sigma_{H,K}} K \otimes H$ defined by $a \otimes b \mapsto b \otimes a$
- ► In **Set**: $A \times B \xrightarrow{\sigma_{A,B}} B \times A$ defined by $(a,b) \mapsto (b,a)$
- ▶ In **Rel**: $A \times B \xrightarrow{\sigma_{A,B}} B \times A$ defined by $(a,b) \sim (b,a)$

We draw the braiding as:

We draw the braiding as:

$$A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$$
 $B \otimes A \xrightarrow{\sigma_{A,B}^{-1}} A \otimes A$

The strands of a braiding cross over each other, so the diagrams are not planar; they are inherently 3-dimensional. Invertibility becomes:

Naturality becomes:

Naturality becomes:

$$f$$
 g $=$ g f

Hexagon equations become:

Graphical calculus

Braided monoidal categories have sound and complete graphical calculus: well-formed equation between morphisms in a braided monoidal category follows from the axioms \iff it holds in the graphical language up to 3-dimensional isotopy.

Symmetry

Braided monoidal category is symmetric when

$$\sigma_{B,A} \circ \sigma_{A,B} = \mathrm{id}_{A \otimes B}$$

Strings can pass through each other, no knots: 4d geometry

Symmetry

Braided monoidal category is symmetric when

$$\sigma_{B,A} \circ \sigma_{A,B} = \mathrm{id}_{A \otimes B}$$

Strings can pass through each other, no knots: 4d geometry

Because $\sigma_{A,B} = \sigma_{B,A}^{-1}$ we may draw

Strictification

► Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)

Strictification

- Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)
- Skeletalisation theorem: every category is equivalent to a skeletal one (isomorphic objects are equal)
- Not every monoidal category is monoidally equivalent to skeletal strict monoidal category

Strictification

- Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)
- Skeletalisation theorem: every category is equivalent to a skeletal one (isomorphic objects are equal)
- Not every monoidal category is monoidally equivalent to skeletal strict monoidal category
- ▶ But equivalence **FHilb** \simeq **Mat**_ℂ is monoidal (tensor product $n \otimes m = nm$, tensor unit 1)

Scalars

Monoidal structure of **Hilb** encodes structure of complex numbers.

- As a set: $Hilb(\mathbb{C}, \mathbb{C})$, endomorphisms of tensor unit.
- ▶ Multiplication: of complex numbers is given by composition.
- ▶ Commutativity: ab = ba for all elements of $Hilb(\mathbb{C}, \mathbb{C})$.

A scalar in a monoidal category is a morphism $I \rightarrow I$.

Can replicate a lot of linear algebra in any monoidal category.

Scalars commute

Lemma: In a monoidal category, scalars commute.

Proof. Consider the following diagram, for any two scalars $I \xrightarrow{a,b} I$:

Side cells: naturality of λ_I and ρ_I . Bottom cell: interchange law. Vertical arrows: coherence.

Scalars commute

Lemma: In a monoidal category, scalars commute.

Proof. Consider the following diagram, for any two scalars $I \xrightarrow{a,b} I$:

Side cells: naturality of λ_I and ρ_I . Bottom cell: interchange law. Vertical arrows: coherence.

Graphical calculus

We draw a scalar $I \stackrel{a}{\rightarrow} I$ as a circle:

Graphical calculus

We draw a scalar $I \stackrel{a}{\rightarrow} I$ as a circle:

Commutativity of scalars becomes:

Diagrams are isotopic, so it follows from correctness of the graphical calculus that scalars are commutative.

Scalar multiplication

Can multiply linear map $H \xrightarrow{f} J$ with number $c \in \mathbb{C}$, to get $H \xrightarrow{c \cdot f} J$. Works in any monoidal category.

The left scalar multiplication of morphism $A \xrightarrow{f} B$ with scalar $I \xrightarrow{a} I$ is

Graphically:

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a,b} I$ and $A \xrightarrow{f} B$, $B \xrightarrow{g} C$:

- ightharpoonup $\operatorname{id}_{I} \bullet f = f$
- $\triangleright a \bullet b = a \circ b$
- ightharpoonup a ullet (b ullet f) = (a ullet b) ullet f
- $(b \bullet g) \circ (a \bullet f) = (b \circ a) \bullet (g \circ f)$

Proof. Use graphical calculus.

$$\begin{array}{ccc}
 & a \cdot b & & \\
 & I & \longrightarrow & I \\
 & \lambda_{i} & \downarrow & dep & & \downarrow \lambda_{i} \\
 & IeI & \longrightarrow & IeI \\
 & & a \cdot b & & IeI
\end{array}$$

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a,b} I$ and $A \xrightarrow{f} B$, $B \xrightarrow{g} C$:

- ightharpoonup $\operatorname{id}_{I} \bullet f = f$
- ightharpoonup a
 ightharpoonup b = a
 ightharpoonup b
- ightharpoonup a ullet (b ullet f) = (a ullet b) ullet f
- $\blacktriangleright \ (b \bullet g) \circ (a \bullet f) = (b \circ a) \bullet (g \circ f)$

Proof. Use graphical calculus.

- ▶ In **Hilb**: if $a \in \mathbb{C}$ is a scalar and $H \xrightarrow{f} K$ a morphism, then $H \xrightarrow{a \bullet f} K$ is the morphism $v \mapsto af(v)$.
- ▶ In **Set**, scalar multiplication is trivial: if $A \xrightarrow{f} B$ is a function, then id₁ f = f is again the same function.
- ▶ In **Rel**: for any relation $A \xrightarrow{R} B$, true R = R, and false $R = \emptyset$.

Daggers

In the definition of **FHilb**, something was a bit strange: we didn't use the inner products at all.

Inner products give adjoint linear maps:

 $\langle f^{+}(x) \rangle > = \langle x \rangle f(y) >$

Daggers

In the definition of **FHilb**, something was a bit strange: we didn't use the inner products at all.

Inner products give adjoint linear maps:

$$(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$$
 $id_H^{\dagger} = id_H$ $(f^{\dagger})^{\dagger} = f$

Taking adjoints: contravariant involutive functor, identity on objects.

Conversely, can recover inner products from this functor:

$$(\mathbb{C} \xrightarrow{w} H \xrightarrow{\nu^{\dagger}} \mathbb{C}) \equiv \nu^{\dagger}(w(1)) = \langle 1 | \nu^{\dagger}(w(1)) \rangle = \langle \nu | w \rangle$$

So \dagger and $\langle -|-\rangle$ encode *equivalent* information.

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ▶ Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if s R t.

in Sct:
$$\beta \xrightarrow{\beta} \{1,2\}$$

$$\beta \xleftarrow{} \{1,2\}$$

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ► Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if s R t.
- ▶ **Set** cannot be made into a dagger category: **Set**(A,B) has size $|B|^{|A|}$, while **Set**(B,A) has size $|A|^{|B|}$.
- ▶ **Vect** cannot be given a dagger functor: $\mathbf{Vect}(\mathbb{C}, V)$ has a smaller dimension than $\mathbf{Vect}(V, \mathbb{C})$ when V is infinite-dimensional.

Dagger categories

A dagger on a category C is an involutive contravariant functor $\dagger\colon C\to C$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- ▶ Hilb is a dagger category using adjoint linear maps.
- ▶ $Mat_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- ▶ **Rel** can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if s R t.
- ▶ **Set** cannot be made into a dagger category: **Set**(A,B) has size $|B|^{|A|}$, while **Set**(B,A) has size $|A|^{|B|}$.
- ▶ **Vect** cannot be given a dagger functor: **Vect**(\mathbb{C} , V) has a smaller dimension than **Vect**(V, \mathbb{C}) when V is infinite-dimensional.
- ► **FVect** *can* be given dagger (e.g. by assigning an inner product to objects and constructing adjoints.) But not *canonically* so.

Terminology

A morphism $A \xrightarrow{f} B$ in a dagger category is:

- ▶ the adjoint of $B \stackrel{g}{\rightarrow} A$ when $g = f^{\dagger}$
- ightharpoonup self-adjoint when $f = f^{\dagger}$
- ▶ a projection when $f = f^{\dagger}$ and $f \circ f = f$
- unitary when both $f^{\dagger} \circ f = \mathrm{id}_A$ and $f \circ f^{\dagger} = \mathrm{id}_B$

▶ an isometry when
$$f^{\dagger} \circ f = \mathrm{id}_A$$
 $\langle f(\mathbf{x}) | f(\mathbf{y}) \rangle = \langle f^{\dagger}(\mathbf{x}) | f(\mathbf{y}) \rangle$

• a partial isometry when $f^{\dagger} \circ f$ is a projection $f^{\dagger} \circ f = f(\mathbf{x}) | f(\mathbf{y}) \rangle$

- ▶ a partial isometry when $f^{\dagger} \circ f$ is a projection
- **positive** when $f = g^{\dagger} \circ g$ for some morphism $H \stackrel{g}{\longrightarrow} K$

Graphical calculus

Depict taking daggers by reflection in horizontal axis.

Graphical calculus

Depict taking daggers by reflection in horizontal axis.

To differentiate, draw morphisms in a way that breaks symmetry. We also drop the label † from the morphism box.

States, effects, scalars

Dagger gives a correspondence between states and effects:

States, effects, scalars

Dagger gives a correspondence between states and effects:

Inner product between two states:

$$\langle v|w\rangle = \bigvee_{w} = \bigvee_{w}$$

Generalised form of Dirac's bra-ket notation.

Way of the dagger

A monoidal dagger category is a dagger category that is also monoidal, such that:

- $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$ for all morphisms f and g;
- the natural isomorphisms α , λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category equipped with a unitary braiding. $(\begin{tabular}{c}\begin{tabular}{c}\begin{tabular}{c}\begin{tabular}{c}\begin{tabular}\begin{tabular}{c}\begin{tabular}{c}\begin{tabular}\begin$

A symmetric monoidal dagger category is a braided monoidal dagger category for which the braiding is a symmetry. $(V)^{\dagger} \in V$

$$f = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} : C^2 \longrightarrow C^2 \qquad f'' = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

$$f^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \neq id$$

$$f^{\dagger} f = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = f^{\dagger} f = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = f^{\dagger} f$$

- ▶ Braiding and symmetry: correct graphical calculus
- ► Scalars: morphisms $I \rightarrow I$
- Scalars commute
- Scalar multiplication
- ▶ Daggers: generalise inner product
- ▶ Way of the dagger: monoidal dagger categories