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Braiding

A braided monoidal category has a natural isomorphism
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Braiding
A braided monoidal category has a natural isomorphism
A®B25HB@A

satisfying the hexagon equations

OA,BRC
AR(B®C) — > BRC)®A A2B) ®C % co@AaB)
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Braiding

A braided monoidal category has a natural isomorphism
A®B25HB@A

satisfying the hexagon equations

OA,B&C
AR B®C) —— BR®C)®A (A®B) ®C*>C®(A®B)
aABC aBCA\ /OéABc aC,A,B\
(A®B)® ®(C®A) ®B®CO) (C®A)®B
oap ® idc ida ® oB,c
idg ® oa,c oa,c ®1idp
(BeA)®C ———B®(A®C) A®(C®B) —— (A®C)®B
QpACc -

Qac.B
» InHilb: H® K- 2% K @ H defined bya®b — b®a
> In Set: A x B-% B x A defined by (a,b) — (b, a)
» InRel: A x B2 B x A defined by (a,b) ~ (b, a)
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Braiding
We draw the braiding as:
% A
\ %
tf’_li\ s .
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Braiding

We draw the braiding as:

A >

-1
AQB2EBoA BRA- A% A 9B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional. Invertibility becomes:

Q) - ) -

N 4
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Braiding

Naturality becomes:

i
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Braiding

Naturality becomes:

Hexagon equations become:

AR R
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Graphical calculus

Braided monoidal categories have sound and complete graphical
calculus: well-formed equation between morphisms in a braided
monoidal category follows from the axioms <= it holds in the
graphical language up to 3-dimensional isotopy.

81

>

—
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Symmetry
Braided monoidal category is symmetric when

0BA ©0aB = idagB

é

Strings can pass through each other, no knots: 4d geometry
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Symmetry
Braided monoidal category is symmetric when
0BA ©0aB = idagB
o
2

Strings can pass through each other, no knots: 4d geometry

Because 0, p = UB_}x we may draw
<K
N T
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)

» Skeletalisation theorem: every category is equivalent to a
skeletal one (isomorphic objects are equal)

» Not every monoidal category is monoidally equivalent to
skeletal strict monoidal category
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Strictification

» Strictification theorem: every monoidal category is monoidally
equivalent to a strict one (unitors and associators are identities)

» Skeletalisation theorem: every category is equivalent to a
skeletal one (isomorphic objects are equal)

» Not every monoidal category is monoidally equivalent to
skeletal strict monoidal category

» But equivalence FHilb ~ Mat¢ is monoidal
(tensor product n ® m = nm, tensor unit 1)
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Scalars

Monoidal structure of Hilb encodes structure of complex numbers.
> As a set: Hilb(C, C), endomorphisms of tensor unit.
» Multiplication: of complex numbers is given by composition.
» Commutativity: ab = ba for all elements of Hilb(C, C).

A scalar in a monoidal category is a morphism I — 1.

Can replicate a lot of linear algebra in any monoidal category.
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Scalars commute

Lemma: In a monoidal category, scalars commute.
Proof. Consider the following diagram, for any two scalars I LLNS

a
1 1
N \X
a
I 1
N ot Aot
ALl pr A1 | PI
I®I ” I®I
a® i .
id @b "ideb .
I®I I®I

a® id; )J-:(r:IGI —T

Side cells: naturality of A; and p;. Bottom cell: interchange law.
Vertical arrows: coherence. O
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Scalars commute

Lemma: In a monoidal category, scalars commute.

Proof. Consider the following diagram, for any two scalars I LLNS

a
1 1
N \X
a
I 1
N ot Aot
Ar|pr Ar | P
oI ” 1ol
a®i .
id @b " ideb >\
I®I I®I

a ® id;

Side cells: naturality of A; and p;. Bottom cell: interchange law.

Vertical arrows: coherence.
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Graphical calculus

We draw a scalar I %1 as a circle:

O
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Graphical calculus

We draw a scalar I %1 as a circle:

O

Commutativity of scalars becomes:

® )
O ®

Diagrams are isotopic, so it follows from correctness of the graphical
calculus that scalars are commutative.
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Scalar multiplication
Can multiply linear map H £, J with number ¢ € C, to get H .

Works in any monoidal category.
The left scalar multiplication of morphism A J, B with scalar I %I is

aef
A—— B

Aﬁ[ %3
axf

I®A—I®B

Graphically:

©® [
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Scalar multiplication

Many familiar properties. For I b, rand A L B,BS C:

> idjef=f ab

> aeb=aob T — 7T

> ae(bef)=(aeb)ef | @ 1

> (beg)o(aef) = (boa)e(gof) Ter —— Tol
Proof. Use graphical calculus. aab O

®©®-2

w

£ NN
®@$w@i.§%%=@1
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Scalar multiplication

Many familiar properties. For I b, rand A L B,BS C:
> idjef =f
» aeb=aob
> ae(bef)=(aeb)ef
> (beg)o(aef)=(boa)e(gof)
Proof. Use graphical calculus. O

» In Hilb: ifa € Cis a scalar and H - K a morphism, then
H-% K is the morphism v — af(v).

» In Set, scalar multiplication is trivial: if A L. Bisa function, then
id; e f = f is again the same function.

» In Rel: for any relation A% B, true ¢ R = R, and false ¢ R = .
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Daggers

In the definition of FHilb, something was a bit strange:
we didn’t use the inner products at all.

"l(K}) > =L k) £
Inner products give adjoint linear maps: 4[ 7 f5)2

(gof)i =fTogl idy' = idy (fH

Taking adjoints. contravariant involufive functor, identity(on objects.

(01> = Swtgys  folor> = Leiglle)>
£

A=, ) > Lh@ > =lel lgf)()?
s < | g(fle)>

<9’((l‘) I f(5)>

L fHGMa) | 4>

h

]

n
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Daggers
In the definition of FHilb, something was a bit strange:
we didn’t use the inner products at all.
Inner products give adjoint linear maps:
(gof)f =fTogl idy" = idy (=
Taking adjoints: contravariant involutive functor, identity on objects.
Conversely, can recover inner products from this functor:
(€% H %) =viw(1) = (1 w(1) = (vIw)

So f and (—|—) encode equivalent information.
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Dagger categories

A dagger on a category C is an involutive contravariant functor
1: C— C that is the identity on objects. A dagger category is a
category equipped with a dagger.

Examples:
» Hilb is a dagger category using adjoint linear maps.
» Matc is a dagger category using the conjugate transpose.

» Rel can be given a dagger functor by relational converse: for
SE. T, define T &% S by setting tR' s if and only if sRt.

in Sk £ 7, {24
g XK thal
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Dagger categories

A dagger on a category C is an involutive contravariant functor
1: C— C that is the identity on objects. A dagger category is a
category equipped with a dagger.

Examples:
» Hilb is a dagger category using adjoint linear maps.
» Matc is a dagger category using the conjugate transpose.

» Rel can be given a dagger functor by relational converse: for
SE. T, define T &% S by setting tR' s if and only if sRt.

> Set cannot be made into a dagger category: Set(A, B) has size
|B|/l, while Set(B,A) has size |A|/l.

» Vect cannot be given a dagger functor: Vect(C, V) has a smaller
dimension than Vect(V, C) when V is infinite-dimensional.

14/19



Dagger categories

A dagger on a category C is an involutive contravariant functor
1: C— C that is the identity on objects. A dagger category is a
category equipped with a dagger.

Examples:

>
>
>

Hilb is a dagger category using adjoint linear maps.
Matc is a dagger category using the conjugate transpose.

Rel can be given a dagger functor by relational converse: for
SE. T, define T &% S by setting tR' s if and only if sRt.

Set cannot be made into a dagger category: Set(A, B) has size
|B|/l, while Set(B,A) has size |A|/l.

Vect cannot be given a dagger functor: Vect(C, V) has a smaller
dimension than Vect(V, C) when V is infinite-dimensional.

FVect can be given dagger (e.g. by assigning an inner product to
objects and constructing adjoints.) But not canonically so.
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Terminology

f

A morphism A = B in a dagger category is:

| 2

vVvvyVvVvyvyy

the adjoint of B-%> A when g = fT

self-adjoint when f = f'

a projection whenf = fland fof = f

unitary when both ff o f = id4 and f o fT = idp

an isometry when f1 o f = ida L0 ) fl5)> = &) yd
a partial isometry when fT o f is a projection = Lxly>
positive when f = gf o g for some morphism H % K

15/19



Graphical calculus

Depict taking daggers by reflection in horizontal axis.

A

B
g

A B
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Graphical calculus

Depict taking daggers by reflection in horizontal axis.

B A
:
A B
To differentiate, draw morphisms in a way that breaks symmetry.
We also drop the label { from the morphism box.
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States, effects, scalars

Dagger gives a correspondence between states and effects:

|
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States, effects, scalars

Dagger gives a correspondence between states and effects:
A
v oo T
A
Inner product between two states:

VAN

o - T - &

4

Generalised form of Dirac’s bra-ket notation.

17/19



Way of the dagger

A monoidal dagger category is a dagger category that is also
monoidal, such that:

> (f®g)! =fT ®g' for all morphisms f and g;
» the natural isomorphisms «, A and p are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding. ( \/\ )f = H

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry. < K )+ }<
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Summary /: ( IocL: . Cz _—3(\:" f’r; (o' °'/l)

? o .
163 () 7
RN

Braiding and symmetry: correct graphical calculus
Scalars: morphisms I — I

Scalars commute

Scalar multiplication

Daggers: generalise inner product

Way of the dagger: monoidal dagger categories
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