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Braiding

A braided monoidal category has a natural isomorphism

A ⌦ B
�A,B

B ⌦ A

satisfying the hexagon equations

(A ⌦ B)⌦ C

A ⌦ (B ⌦ C) (B ⌦ C)⌦ A

B ⌦ (C ⌦ A)

(B ⌦ A)⌦ C B ⌦ (A ⌦ C)

↵�1

A,B,C

�A,B⌦C

↵�1

B,C,A

�A,B ⌦ idC

↵B,A,C

idB ⌦ �A,C

A ⌦ (B ⌦ C)

(A ⌦ B)⌦ C C ⌦ (A ⌦ B)

(C ⌦ A)⌦ B

A ⌦ (C ⌦ B) (A ⌦ C)⌦ B

↵A,B,C

�A⌦B,C

↵C,A,B

idA ⌦ �B,C

↵�1

A,C,B

�A,C ⌦ idB

I In Hilb: H ⌦ K
�H,K

K ⌦ H defined by a ⌦ b 7! b ⌦ a

I In Set: A ⇥ B
�A,B

B ⇥ A defined by (a, b) 7! (b, a)

I In Rel: A ⇥ B
�A,B

B ⇥ A defined by (a, b) ⇠ (b, a)
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Braiding

We draw the braiding as:

A ⌦ B
�A,B

B ⌦ A B ⌦ A
��1

A,B
A ⌦ B

The strands of a braiding cross over each other, so the diagrams are

not planar; they are inherently 3-dimensional. Invertibility becomes:

= =
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Braiding

Naturality becomes:

f g
=

g f

f g
=

g f

Hexagon equations become:

= =
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Graphical calculus

Braided monoidal categories have sound and complete graphical

calculus: well-formed equation between morphisms in a braided

monoidal category follows from the axioms () it holds in the

graphical language up to 3-dimensional isotopy.

= =
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Symmetry

Braided monoidal category is symmetric when

�B,A � �A,B = idA⌦B

=

Strings can pass through each other, no knots: 4d geometry

Because �
A,B = ��1

B,A we may draw

= =
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Strictification

I Strictification theorem: every monoidal category is monoidally

equivalent to a strict one (unitors and associators are identities)

I Skeletalisation theorem: every category is equivalent to a

skeletal one (isomorphic objects are equal)

I Not every monoidal category is monoidally equivalent to

skeletal strict monoidal category

I But equivalence FHilb ' MatC is monoidal

(tensor product n ⌦ m = nm, tensor unit 1)
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Scalars

Monoidal structure of Hilb encodes structure of complex numbers.

I As a set: Hilb(C,C), endomorphisms of tensor unit.

I Multiplication: of complex numbers is given by composition.

I Commutativity: ab = ba for all elements of Hilb(C,C).

A scalar in a monoidal category is a morphism I I.

Can replicate a lot of linear algebra in any monoidal category.
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Scalars commute

Lemma: In a monoidal category, scalars commute.

Proof. Consider the following diagram, for any two scalars I
a,b

I:

I I

I ⌦ I I ⌦ I

I I

I ⌦ I I ⌦ I

a

bb

a ⌦ idI

�I
⇢I

⇢�1

I
��1

I

idI ⌦ b

a ⌦ idI

idI ⌦ b

��1

I
⇢�1

I

a

�I ⇢I

Side cells: naturality of �I and ⇢I. Bottom cell: interchange law.

Vertical arrows: coherence.
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Graphical calculus

We draw a scalar I
a

I as a circle:

a

Commutativity of scalars becomes:

a

b

=
b

a

Diagrams are isotopic, so it follows from correctness of the graphical

calculus that scalars are commutative.
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Scalar multiplication

Can multiply linear map H
f

J with number c 2 C, to get H
c·f

J.

Works in any monoidal category.

The left scalar multiplication of morphism A
f

B with scalar I
a

I is

A B

I ⌦ A I ⌦ B

a • f

��1

A
�B

a ⌦ f

Graphically:

s f

11 / 19



Scalar multiplication

Many familiar properties. For I
a,b��! I and A

f�! B, B
g�! C:

I idI • f = f

I a • b = a � b

I a • (b • f) = (a • b) • f

I (b • g) � (a • f) = (b � a) • (g � f)

Proof. Use graphical calculus.

I In Hilb: if a 2 C is a scalar and H
f

K a morphism, then

H
a•f

K is the morphism v 7! af(v).

I In Set, scalar multiplication is trivial: if A
f

B is a function, then

id1 • f = f is again the same function.

I In Rel: for any relation A
R

B, true • R = R, and false • R = ;.
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Daggers

In the definition of FHilb, something was a bit strange:

we didn’t use the inner products at all.

Inner products give adjoint linear maps:

(g � f)† = f
† � g

†
idH

† = idH (f †)† = f

Taking adjoints: contravariant involutive functor, identity on objects.

Conversely, can recover inner products from this functor:

(C w
H

v
† C) ⌘ v

†(w(1)) = h1|v†(w(1))i = hv|wi

So † and h�|�i encode equivalent information.
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Dagger categories

A dagger on a category C is an involutive contravariant functor

† : C C that is the identity on objects. A dagger category is a

category equipped with a dagger.

Examples:

I Hilb is a dagger category using adjoint linear maps.

I MatC is a dagger category using the conjugate transpose.

I Rel can be given a dagger functor by relational converse: for

S
R

T, define T
R
†

S by setting t R
†

s if and only if s R t.

I Set cannot be made into a dagger category: Set(A,B) has size

|B||A|, while Set(B,A) has size |A||B|.
I Vect cannot be given a dagger functor: Vect(C,V) has a smaller

dimension than Vect(V,C) when V is infinite-dimensional.

I FVect can be given dagger (e.g. by assigning an inner product to

objects and constructing adjoints.) But not canonically so.
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Terminology

A morphism A
f

B in a dagger category is:

I the adjoint of B
g

A when g = f
†

I self-adjoint when f = f
†

I a projection when f = f
†

and f � f = f

I unitary when both f
† � f = idA and f � f

† = idB

I an isometry when f
† � f = idA

I a partial isometry when f
† � f is a projection

I positive when f = g
† � g for some morphism H

g
K

15 / 19



Graphical calculus

Depict taking daggers by reflection in horizontal axis.

A

B

f
†7!

B

A

f
†

To differentiate, draw morphisms in a way that breaks symmetry.

We also drop the label † from the morphism box.
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States, effects, scalars

Dagger gives a correspondence between states and effects:

v

A

7!
v

A

Inner product between two states:

hv|wi =
w

v

= w

v

Generalised form of Dirac’s bra-ket notation.
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Way of the dagger

A monoidal dagger category is a dagger category that is also

monoidal, such that:

I (f ⌦ g)† = f
† ⌦ g

†
for all morphisms f and g;

I the natural isomorphisms ↵, � and ⇢ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category

equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger

category for which the braiding is a symmetry.
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Summary

I Braiding and symmetry: correct graphical calculus

I Scalars: morphisms I I

I Scalars commute

I Scalar multiplication

I Daggers: generalise inner product

I Way of the dagger: monoidal dagger categories
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