Introduction to Quantum Programming and Semantics

Week 3: Symmetry, scalars, daggers

Chris Heunen

THE UNIVERSITY of EDINBURGH

Braiding
A braided monoidal category has a natural isomorphism

$$
A \otimes B \xrightarrow{\sigma_{A, B}} B \otimes A
$$

Braiding

A braided monoidal category has a natural isomorphism

$$
A \otimes B \xrightarrow{\sigma_{A, B}} B \otimes A
$$

satisfying the hexagon equations

Braiding

A braided monoidal category has a natural isomorphism

$$
A \otimes B \xrightarrow{\sigma_{A, B}} B \otimes A
$$

satisfying the hexagon equations
$A \otimes(B \otimes C) \xrightarrow{\sigma_{A, B \otimes C}}(B \otimes C) \otimes A$ $\left|\begin{array}{ll}\alpha_{A, B, C}^{-1} & \alpha_{B, C, A}^{-1}\end{array}\right|$
$(A \otimes B) \otimes C \quad B \otimes(C \otimes A)$
$\downarrow_{A, B} \otimes \mathrm{id}_{C}$
$\mathrm{id}_{B} \otimes \sigma_{A, C} \uparrow$
$(B \otimes A) \otimes C \xrightarrow[\alpha_{B, A, C}]{ } B \otimes(A \otimes C)$

$$
(A \otimes B) \otimes C \xrightarrow{\sigma_{A \otimes B, C}} C \otimes(A \otimes B)
$$

$$
\downarrow \alpha_{A, B, C} \quad \alpha_{C, A, B} \uparrow
$$

$$
A \otimes(B \otimes C) \quad(C \otimes A) \otimes B
$$

$$
\underset{\alpha_{A, C, B}^{-1}}{\downarrow}(A \otimes C) \otimes B
$$

- In Hilb: $H \otimes K \xrightarrow{\sigma_{H, K}} K \otimes H$ defined by $a \otimes b \mapsto b \otimes a$
- In Set: $A \times B \xrightarrow{\sigma_{A, B}} B \times A$ defined by $(a, b) \mapsto(b, a)$
- In Rel: $A \times B \xrightarrow{\sigma_{A, B}} B \times A$ defined by $(a, b) \sim(b, a)$

Braiding

We draw the braiding as:

Braiding

We draw the braiding as:

The strands of a braiding cross over each other, so the diagrams are not planar; they are inherently 3-dimensional. Invertibility becomes:

Braiding

Naturality becomes:

Braiding

Naturality becomes:

$$
\underset{f}{9}=\frac{1}{g}=\frac{1}{g}
$$

Hexagon equations become:

Graphical calculus

Braided monoidal categories have sound and complete graphical calculus: well-formed equation between morphisms in a braided monoidal category follows from the axioms \Longleftrightarrow it holds in the graphical language up to 3-dimensional isotopy.

Symmetry

Braided monoidal category is symmetric when

$$
\sigma_{B, A} \circ \sigma_{A, B}=\operatorname{id}_{A \otimes B}
$$

Strings can pass through each other, no knots: 4d geometry

Symmetry

Braided monoidal category is symmetric when

$$
\sigma_{B, A} \circ \sigma_{A, B}=\operatorname{id}_{A \otimes B}
$$

Strings can pass through each other, no knots: 4d geometry
Because $\sigma_{A, B}=\sigma_{B, A}^{-1}$ we may draw

Strictification

- Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)

Strictification

- Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)
- Skeletalisation theorem: every category is equivalent to a skeletal one (isomorphic objects are equal)
- Not every monoidal category is monoidally equivalent to skeletal strict monoidal category

Strictification

- Strictification theorem: every monoidal category is monoidally equivalent to a strict one (unitors and associators are identities)
- Skeletalisation theorem: every category is equivalent to a skeletal one (isomorphic objects are equal)
- Not every monoidal category is monoidally equivalent to skeletal strict monoidal category
- But equivalence $\mathbf{F H i l b} \simeq$ Mat $_{\mathbb{C}}$ is monoidal (tensor product $n \otimes m=n m$, tensor unit 1)

Scalars

Monoidal structure of Hilb encodes structure of complex numbers.

- As a set: $\operatorname{Hilb}(\mathbb{C}, \mathbb{C})$, endomorphisms of tensor unit.
- Multiplication: of complex numbers is given by composition.
- Commutativity: $a b=b a$ for all elements of $\operatorname{Hilb}(\mathbb{C}, \mathbb{C})$.

A scalar in a monoidal category is a morphism $I \rightarrow I$.
Can replicate a lot of linear algebra in any monoidal category.

Scalars commute

Lemma: In a monoidal category, scalars commute. Proof. Consider the following diagram, for any two scalars $I \xrightarrow{a, b} I$:

Side cells: naturality of λ_{I} and ρ_{I}. Bottom cell: interchange law. Vertical arrows: coherence.

$$
\begin{aligned}
& I \xrightarrow{b} I \\
& \lambda_{I}^{-1} \downarrow \quad \uparrow \lambda_{I} \longleftrightarrow \lambda_{I} \uparrow \quad \uparrow \lambda_{I} \\
& I \otimes I \underset{i d \theta b}{ } I \otimes I \\
& I \otimes I \xrightarrow[i d \theta b]{ } I \otimes I \\
& \longleftarrow: \lambda_{I} \cdot(i d \in b) \cdot \lambda_{I}^{\prime \prime} \\
& \lambda_{I} \cdot(i d o b)=b \cdot \lambda_{I} \\
& =b 0 \lambda_{I} \cdot \lambda_{I}^{\top} \\
& =b \cdot \text { id } \\
& =b
\end{aligned}
$$

Scalars commute

Lemma: In a monoidal category, scalars commute. Proof. Consider the following diagram, for any two scalars $I \xrightarrow{a, b} I$:

Side cells: naturality of λ_{I} and ρ_{I}. Bottom cell: interchange law. Vertical arrows: coherence.

Graphical calculus

We draw a scalar $I \xrightarrow{a} I$ as a circle:
(a)

Graphical calculus

We draw a scalar $I \xrightarrow{a} I$ as a circle:

(a)

Commutativity of scalars becomes:

Diagrams are isotopic, so it follows from correctness of the graphical calculus that scalars are commutative.

Scalar multiplication

Can multiply linear map $H \xrightarrow{f} J$ with number $c \in \mathbb{C}$, to get $H \xrightarrow{c \cdot f} J$. Works in any monoidal category.

The left scalar multiplication of morphism $A \xrightarrow{f} B$ with scalar $I \xrightarrow{a} I$ is

Graphically:

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a, b} I$ and $A \xrightarrow{f} B, B \xrightarrow{g} C$:

$$
\begin{aligned}
& \text { } \operatorname{id}_{I} \bullet f=f \\
& \text { - } a \bullet b=a \circ b \\
& \text { - } a \bullet(b \bullet f)=(a \bullet b) \bullet f \\
& (b \bullet g) \circ(a \bullet f)=(b \circ a) \bullet(g \circ f)
\end{aligned}
$$

Proof. Use graphical calculus.

(a) (b) $=$
(a)
(a)

Scalar multiplication

Many familiar properties. For $I \xrightarrow{a, b} I$ and $A \xrightarrow{f} B, B \xrightarrow{g} C$:
$-\mathrm{id}_{I} \bullet f=f$

- $a \bullet b=a \circ b$
- $a \bullet(b \bullet f)=(a \bullet b) \bullet f$
- $(b \bullet g) \circ(a \bullet f)=(b \circ a) \bullet(g \circ f)$

Proof. Use graphical calculus.

- In Hilb: if $a \in \mathbb{C}$ is a scalar and $H \xrightarrow{f} K$ a morphism, then $H \xrightarrow{a \bullet f} K$ is the morphism $v \mapsto a f(v)$.
- In Set, scalar multiplication is trivial: if $A \xrightarrow{f} B$ is a function, then $\operatorname{id}_{1} \bullet f=f$ is again the same function.
- In Rel: for any relation $A \xrightarrow{R} B$, true $\bullet R=R$, and false $\bullet R=\emptyset$.

In Rel: Scalar is relation $1 \longrightarrow 1$

$$
\text { ie. } \quad \begin{aligned}
& S \subseteq|x| \\
& \text { so } \quad \begin{aligned}
S & =\phi \text { or } S
\end{aligned}=1 \times 1 \\
&=\text { false } \\
&=\text { true }
\end{aligned}
$$

$$
A N D=0 \left\lvert\, \begin{array}{rl}
0 & f \\
\hline f & f
\end{array}\right.
$$

$$
\begin{aligned}
f \circ f=\varnothing \cdot \phi & =\left\{(x, z) \in(x) \mid \exists_{y} \in 1:(x, y) \in \phi,(y, z) \in \varnothing\right\} \\
& =\varnothing
\end{aligned}
$$

Daggers

In the definition of FHilb, something was a bit strange: we didn't use the inner products at all.

$$
\left\langle f^{+}(x) l_{y}\right\rangle=\langle x \mid f(y)\rangle
$$

Inner products give adjoint linear maps:

$$
\begin{aligned}
& (g \circ f)^{\dagger}=f^{\dagger} \circ g^{\dagger} \quad \mathrm{id}_{H}^{\dagger}=\mathrm{id}_{H} \quad\left(f^{\dagger}\right)^{\dagger}=f \\
& \text { Taking adjoint. contravariant involufive functor, identity(On objects. } \\
& h=(g \circ f)^{t} \Longleftrightarrow\langle h(x) / y\rangle=\langle k \mid(g \circ f)(y)\rangle \\
& =\langle k| g(f(s)| \rangle \\
& =\left\langle g^{+}(x) \mid f(b)\right\rangle \\
& =\left\langle f^{t}\left(g^{t}|x|\right) \mid y\right\rangle
\end{aligned}
$$

Daggers

In the definition of FHilb, something was a bit strange: we didn't use the inner products at all.

Inner products give adjoint linear maps:

$$
(g \circ f)^{\dagger}=f^{\dagger} \circ g^{\dagger} \quad \operatorname{id}_{H}^{\dagger}=\operatorname{id}_{H} \quad\left(f^{\dagger}\right)^{\dagger}=f
$$

Taking adjoints: contravariant involutive functor, identity on objects.
Conversely, can recover inner products from this functor:

$$
\left(\mathbb{C} \xrightarrow{w} H \xrightarrow{v^{\dagger}} \mathbb{C}\right) \equiv v^{\dagger}(w(1))=\left\langle 1 \mid v^{\dagger}(w(1))\right\rangle=\langle v \mid w\rangle
$$

So \dagger and $\langle-\mid-\rangle$ encode equivalent information.

Dagger categories

A dagger on a category \mathbf{C} is an involutive contravariant functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- Hilb is a dagger category using adjoint linear maps.
- Mat $_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- Rel can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if $s R t$.
in Set:

$$
\begin{aligned}
& \phi \xrightarrow{\phi}\{1,2\} \\
& \phi \longleftrightarrow\langle 1,21
\end{aligned}
$$

Dagger categories

A dagger on a category \mathbf{C} is an involutive contravariant functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- Hilb is a dagger category using adjoint linear maps.
- $\mathrm{Mat}_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- Rel can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if $s R t$.
- Set cannot be made into a dagger category: $\operatorname{Set}(A, B)$ has size $|B|^{|A|}$, while $\operatorname{Set}(B, A)$ has size $|A|^{|B|}$.
- Vect cannot be given a dagger functor: $\operatorname{Vect}(\mathbb{C}, V)$ has a smaller dimension than $\operatorname{Vect}(V, \mathbb{C})$ when V is infinite-dimensional.

Dagger categories

A dagger on a category \mathbf{C} is an involutive contravariant functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$ that is the identity on objects. A dagger category is a category equipped with a dagger.

Examples:

- Hilb is a dagger category using adjoint linear maps.
- $\mathrm{Mat}_{\mathbb{C}}$ is a dagger category using the conjugate transpose.
- Rel can be given a dagger functor by relational converse: for $S \xrightarrow{R} T$, define $T \xrightarrow{R^{\dagger}} S$ by setting $t R^{\dagger} s$ if and only if $s R t$.
- Set cannot be made into a dagger category: $\operatorname{Set}(A, B)$ has size $|B|^{|A|}$, while $\operatorname{Set}(B, A)$ has size $|A|^{|B|}$.
- Vect cannot be given a dagger functor: $\operatorname{Vect}(\mathbb{C}, V)$ has a smaller dimension than $\operatorname{Vect}(V, \mathbb{C})$ when V is infinite-dimensional.
- FVect can be given dagger (e.g. by assigning an inner product to objects and constructing adjoints.) But not canonically so.

Terminology

A morphism $A \xrightarrow{f} B$ in a dagger category is:

- the adjoint of $B \xrightarrow{g} A$ when $g=f^{\dagger}$
- self-adjoint when $f=f^{\dagger}$
- a projection when $f=f^{\dagger}$ and $f \circ f=f$
- unitary when both $f^{\dagger} \circ f=\mathrm{id}_{A}$ and $f \circ f^{\dagger}=\mathrm{id}_{B}$
- an isometry when $f^{\dagger} \circ f=\mathrm{id}_{A} \quad\langle f(x) \mid f(y)\rangle=\left\langle f^{\dagger} f(x) \mid y\right\rangle$
- a partial isometry when $f^{\dagger} \circ f$ is a projection $=\langle x / y\rangle$
- positive when $f=g^{\dagger} \circ g$ for some morphism $H \xrightarrow{g} K$

Graphical calculus

Depict taking daggers by reflection in horizontal axis.

Graphical calculus

Depict taking daggers by reflection in horizontal axis.

To differentiate, draw morphisms in a way that breaks symmetry. We also drop the label \dagger from the morphism box.

States, effects, scalars

Dagger gives a correspondence between states and effects:

States, effects, scalars

Dagger gives a correspondence between states and effects:

Inner product between two states:

Generalised form of Dirac's bra-ket notation.

Way of the dagger

A monoidal dagger category is a dagger category that is also monoidal, such that:

- $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$ for all morphisms f and g;
- the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category equipped with a unitary braiding. $\quad(\mathrm{L})^{\dagger}=\boldsymbol{K}$
A symmetric monoidal dagger category is a braided monoidal dagger category for which the braiding is a symmetry.

$$
(X)^{+}=X
$$

Summary

$$
\begin{array}{ll}
f=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right): \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2} \quad f^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 / 2
\end{array}\right) \\
f^{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad f^{+} f=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) \neq i d \\
& {f f^{\prime}}^{\circ} \quad f^{-1} f=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=f f^{-1}
\end{array}
$$

- Braiding and symmetry: correct graphical calculus
- Scalars: morphisms $I \rightarrow I$
- Scalars commute
- Scalar multiplication
- Daggers: generalise inner product
- Way of the dagger: monoidal dagger categories

