Introduction to Quantum Programming and Semantics: tutorial 1 answers

Exercise 0.1. Composition arises from transitivity: if $x \le y$ and $y \le z$ then $x \le z$. This is automatically associative. Identities arise from reflexivity: $x \le x$. (We don't actually need anti-symmetry, pre-orders also induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid multiplication.

Note: pre-orders and monoids are two 'extreme' types of categories. Pre-orders have lots of objects and as few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths $v \rightarrow v$ of length 0.

- **Exercise 0.4.** (a) A functor $P \rightarrow Q$ by definition consists of a function $f: P \rightarrow Q$ (on objects) that maps morphisms to morphisms. This means precisely that if $x \leq y$ is a morphism in P, then there must be a morphism $f(x) \leq f(y)$ in Q.
 - (b) A functor $M \to N$ by definition consists of a function $\{*\} \to \{*\}$ (on objects), and a function $f: M \to N$ (on morphisms). The latter has to preserve composition (f(mn) = f(m)f(n)) and identities (f(1) = 1).
 - (c) Functors $G \to H$ by definition consist of a function $f: \operatorname{Vertices}(G) \to \operatorname{Vertices}(H)$ (on objects), and a function $g: \operatorname{Edges}(G) \to \operatorname{Paths}(H)$. The latter induces a function $\operatorname{Paths}(G) \to \operatorname{Paths}(H)$ that respects associativity of composition and identities by definition of composition and identities in the category G.
- **Exercise 0.5.** (a) Composition of monotone functions is monotone, and the identity is a monotone function.
 - (b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.
- **Exercise 0.6.** (a) True: the functor that sends a set A to itself, and a relation $R \subseteq A \times B$ to $\{(b,a) \mid (a,b) \in R\} \subseteq B \times A$, is its own inverse.
 - (b) False. Suppose there were an isomorphism $F: \mathbf{Set} \to \mathbf{Set}^{\mathrm{op}}$. If a set A has n elements, then $\mathbf{Set}(A, A)$ has n^n elements. Hence also $\mathbf{Set}(F(A), F(A))$ must have n^n elements. Therefore the set F(A) must be finite and have n elements too. Not let B be a finite set with m elements. Then $\mathbf{Set}(A, B) \simeq \mathbf{Set}^{\mathrm{op}}(F(A), F(B)) \simeq \mathbf{Set}(B, A)$, and hence $n^m = m^n$. But e.g. m = 1 and n = 2 give a contradiction.
 - (c) True: the assignment on objects that sends $U \in P(X)$ to its complement $X \setminus U \in P(X)$ is functorial, and its own inverse.

Exercise 0.7. The universal property of $A \times B$ provides a morphism that we'll call $id_A \times p_B$:

The universal property of $(A \times B) \times C$ now provides a morphism $f: A \times (B \times C) \longrightarrow (A \times B) \times C$:

Similarly we find a morphism $g: (A \times B) \times C \rightarrow A \times (B \times C)$.

Now $p_A \circ (g \circ f) = p_A \circ id_{A \times (B \times C)}$ and $p_{B \times C} \circ (g \circ f) = p_{B \times C} \circ id_{A \times (B \times C)}$. But the universal property of $A \times (B \times C)$ says there is only one morphisms that can satisfy this, so we must have $g \circ f = id$. Similarly $f \circ g = id$.