Introduction to Quantum Programming and Semantics: tutorial 1 answers

Exercise 0.1. Composition arises from transitivity: if $x \leq y$ and $y \leq z$ then $x \leq z$. This is automatically associative. Identities arise from reflexivity: $x \leq x$. (We don't actually need anti-symmetry, pre-orders also induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid multiplication.

Note: pre-orders and monoids are two 'extreme' types of categories. Pre-orders have lots of objects and as few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths $v \rightarrow v$ of length 0 .
Exercise 0.4. (a) A functor $P \rightarrow Q$ by definition consists of a function $f: P \rightarrow Q$ (on objects) that maps morphisms to morphisms. This means precisely that if $x \leq y$ is a morphism in P, then there must be a morphism $f(x) \leq f(y)$ in Q.
(b) A functor $M \rightarrow N$ by definition consists of a function $\{*\} \longrightarrow\{*\}$ (on objects), and a function $f: M \rightarrow N$ (on morphisms). The latter has to preserve composition $(f(m n)=f(m) f(n))$ and identities $(f(1)=1)$.
(c) Functors $G \rightarrow H$ by definition consist of a function f : Vertices $(G) \rightarrow \operatorname{Vertices}(H)$ (on objects), and a function g : Edges $(G) \rightarrow \operatorname{Paths}(H)$. The latter induces a function $\operatorname{Paths}(G) \rightarrow \operatorname{Paths}(H)$ that respects associativity of composition and identities by definition of composition and identities in the category G.

Exercise 0.5. (a) Composition of monotone functions is monotone, and the identity is a monotone function.
(b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.

Exercise 0.6. (a) True: the functor that sends a set A to itself, and a relation $R \subseteq A \times B$ to $\{(b, a) \mid(a, b) \in R\} \subseteq B \times A$, is its own inverse.
(b) False. Suppose there were an isomorphism F : Set $\rightarrow \boldsymbol{S e t}^{\mathrm{op}}$. If a set A has n elements, then $\operatorname{Set}(A, A)$ has n^{n} elements. Hence also $\operatorname{Set}(F(A), F(A))$ must have n^{n} elements. Therefore the set $F(A)$ must be finite and have n elements too. Not let B be a finite set with m elements. Then $\operatorname{Set}(A, B) \simeq \operatorname{Set}^{\mathrm{op}}(F(A), F(B)) \simeq \operatorname{Set}(B, A)$, and hence $n^{m}=m^{n}$. But e.g. $m=1$ and $n=2$ give a contradiction.
(c) True: the assignment on objects that sends $U \in P(X)$ to its complement $X \backslash U \in P(X)$ is functorial, and its own inverse.

Exercise 0.7. The universal property of $A \times B$ provides a morphism that we'll call id $A_{A} \times p_{B}$:

The universal property of $(A \times B) \times C$ now provides a morphism $f: A \times(B \times C) \longrightarrow(A \times B) \times C$:

Similarly we find a morphism $g:(A \times B) \times C \rightarrow A \times(B \times C)$.
Now $p_{A} \circ(g \circ f)=p_{A} \circ \mathrm{id}_{A \times(B \times C)}$ and $p_{B \times C} \circ(g \circ f)=p_{B \times C} \circ \mathrm{id}_{A \times(B \times C)}$. But the universal property of $A \times(B \times C)$ says there is only one morphisms that can satisfy this, so we must have $g \circ f=$ id. Similarly $f \circ g=\mathrm{id}$.

