Introduction to Quantum Programming and Semantics:
tutorial 2 answers

Exercise 2.1. Let M be a commutative monoid. Then ®: M x M — M defines a functor. The functoriality
of ® is checked with the commutativity of multiplication as follows.

®(momn,m on’) =mnm'n’ =mn'm'n =&(m,m’) o®(n,n’)

The symmetric monoidal category we construct is strict monoidal; that is, the associator and unitors are
identities. (Note that I = x.)
(*@*)@* = *x = *@(*®*)

The naturalities of the associator and unitors can be checked easily. For example, the naturality of the
associator is checked as follows.

a*,*,*:id
((R%) Q% —————— * Q (* ® %)

(m®n)®l=mnl m® (n®l)=mnl
[0 Fpprae =id

((R*%) Q% — > xR (* ® %)

The triangle and pentagon diagrams are also trivial since all the morphisms appearing in the diagrams are

identities.
®
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®

Note that all of these are equal without the assumption of the monoidal category to be symmetric.

Exercise 2.2.

Exercise 2.3. If a monoidal category only has one object, then it has to be the tensor unit. Every morphism
in the category is a scalar, and from Exercise 2.2, go f = f o g for all f and g. Therefore, regarding the
category as a monoid, it is commutative. From Exercise 2.1, the category is a symmetric monoidal.

Exercise 2.4. When working on discrete categories, we do not need to care about commutativity of diagrams
since every morphism is identity.

The functor ®: M x M — M sends (m,n) to mn. The tensor unit is the unit element of the monoid. Since
the oppsite category of a discrete category is itself, the dagger functor is the identity.

Exercise 2.5. The only non-trivial one is the positive map. Given a positive map f on a Hilbert space, we
first use two Hermitian maps g and h to decompose f as f = g+ih. Applying the spectral decomposition to

g and h, we have
9= Nli)(il, h=> wli)l-
i J



Therefore, we can write (v|f|v) as

S NI(0ld) 2 483 sl ol

But since this has to be non-negative for all v, we have \; > 0 and p; = 0. Defining k by Y, VA i) (i], we
have f =kt o k.

Exercise 2.6. The identity of an object X is a span X &M x 4 ¥ in Set. One can check that
the composition of n morphisms (Xj, fi,g:): A; — A;y1 is defined by the set {(xo,...,zpn—1) | fi(x;) =
9i+1(2i41)} with two functions f(zg,...,2,) = fo(zo) and g(xo,...,Tn—1) = gn-1(Tn-1)-

To make Span a monoidal category with tensor product defined by the usual Cartesian product of sets, we
would first want to construct the functor ®: Span x Span — Span. This functor sends an object (A, A") of
Span x Span which is a pair of sets to A x A’, and a morphism ((X, f,g), (X', f',¢')): (A,A")— (B, B’) to
(X x X', f x f'.9  g).

f * g I X g
A/ \B A// \B,

X x X'
fo Xxg’
Ax A Bx B

The tensor unit is the singleton 1. Associater, left/right unitor and braiding are defined as canonical spans
as follows. !

Ax A x A’ A A Ax B
(AxA)x A" Ax (A xA") 1xA4 A Ax1 A AxB Bx A

The dagger functor Span — Span®? is defined by flipping the legs f and g of a morphism (X, f,g): A— B.
X
N
B A

We also have (X,f.g9)' @ (X', f,¢)" = (X.9.f) @ (X'.g',f") = (X x X'.f x f.g x g) =
(X, f.9) @ (X', f,9))".
An example of an entangled state is the span
{0,1}
N
1 {0,1} x {0,1}

where f is defined by f(0) = (0,1), f(1) = (1,0).
IStrictly speaking, the difference of (A x A’) x A” and A x (A’ x A”) has to be ignored somewhat.




