
Introduction to Quantum Programming and Semantics:

tutorial 2 answers

Exercise 2.1. Let M be a commutative monoid. Then ⊗ : M ×M M defines a functor. The functoriality
of ⊗ is checked with the commutativity of multiplication as follows.

⊗(m ◦ n,m′ ◦ n′) = mnm′n′ = mn′m′n = ⊗(m,m′) ◦ ⊗(n, n′)

The symmetric monoidal category we construct is strict monoidal; that is, the associator and unitors are
identities. (Note that I = ∗.)

(∗ ⊗ ∗)⊗ ∗ = ∗ = ∗ ⊗ (∗ ⊗ ∗)

I ⊗ ∗ = ∗ = ∗ ⊗ I

The naturalities of the associator and unitors can be checked easily. For example, the naturality of the
associator is checked as follows.

(∗ ⊗ ∗)⊗ ∗

(∗ ⊗ ∗)⊗ ∗

∗ ⊗ (∗ ⊗ ∗)

∗ ⊗ (∗ ⊗ ∗)

(m⊗ n)⊗ l = mnl m⊗ (n⊗ l) = mnl

α∗,∗,∗ = id

α∗,∗,∗ = id

The triangle and pentagon diagrams are also trivial since all the morphisms appearing in the diagrams are
identities.

Exercise 2.2. (1)

f

g

(2)

f

g
(3) f g (4) fg

Note that all of these are equal without the assumption of the monoidal category to be symmetric.

Exercise 2.3. If a monoidal category only has one object, then it has to be the tensor unit. Every morphism
in the category is a scalar, and from Exercise 2.2, g ◦ f = f ◦ g for all f and g. Therefore, regarding the
category as a monoid, it is commutative. From Exercise 2.1, the category is a symmetric monoidal.

Exercise 2.4. When working on discrete categories, we do not need to care about commutativity of diagrams
since every morphism is identity.
The functor ⊗ : M ×M →M sends (m,n) to mn. The tensor unit is the unit element of the monoid. Since
the oppsite category of a discrete category is itself, the dagger functor is the identity.

Exercise 2.5. The only non-trivial one is the positive map. Given a positive map f on a Hilbert space, we
first use two Hermitian maps g and h to decompose f as f = g+ ih. Applying the spectral decomposition to
g and h, we have

g =
∑
i

λi|i⟩⟨i|, h =
∑
j

µj |j⟩⟨j|.
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Therefore, we can write ⟨v|f |v⟩ as ∑
i

λi|⟨v|i⟩|2 + i
∑
j

µj |⟨v|j⟩|2.

But since this has to be non-negative for all v, we have λi ≥ 0 and µj = 0. Defining k by
∑

i

√
λi|i⟩⟨i|, we

have f = k† ◦ k.

Exercise 2.6. The identity of an object X is a span X
id←− X

id−→ X in Set. One can check that
the composition of n morphisms (Xi, fi, gi) : Ai → Ai+1 is defined by the set {(x0, . . . , xn−1) | fi(xi) =
gi+1(xi+1)} with two functions f(x0, . . . , xn) = f0(x0) and g(x0, . . . , xn−1) = gn−1(xn−1).
To make Span a monoidal category with tensor product defined by the usual Cartesian product of sets, we
would first want to construct the functor ⊗ : Span×Span Span. This functor sends an object (A,A′) of
Span× Span which is a pair of sets to A×A′, and a morphism ((X, f, g), (X ′, f ′, g′)) : (A,A′) (B,B′) to
(X ×X ′, f × f ′, g × g).

X

A B

f g
X ′

A′ B′

f ′ g′

X ×X ′

A×A′ B ×B′

f × f ′ g × g′

The tensor unit is the singleton 1. Associater, left/right unitor and braiding are defined as canonical spans
as follows. 1

A×A′ ×A′′

(A×A′)×A′′ A× (A′ ×A′′)

A

1×A A

A

A× 1 A

A×B

A×B B ×A

The dagger functor Span Spanop is defined by flipping the legs f and g of a morphism (X, f, g) : A B.

X

B A

g f

We also have (X, f, g)
† ⊗ (X ′, f ′, g′)

†
= (X, g, f) ⊗ (X ′, g′, f ′) = (X × X ′, f × f ′, g × g′) =

((X, f, g)⊗ (X ′, f ′, g′))
†
.

An example of an entangled state is the span

{0, 1}

1 {0, 1} × {0, 1}

f

where f is defined by f(0) = (0, 1), f(1) = (1, 0).
1Strictly speaking, the difference of (A×A′)×A′′ and A× (A′ ×A′′) has to be ignored somewhat.
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