Introduction to Quantum Programming and Semantics: solutions

Exercise 1.13

The axiom applying to each region can be deduced from its number of nonidentity sides: 2 for invertibility, 3 for triangle, 4 for naturality, and 5 for pentagon.

Exercise 3.1

Suppose that η is the morphism $I \xrightarrow{\lambda_{i}^{-1}} I \otimes I \xrightarrow{r \otimes l} R \otimes L$. Then

A similar argument holds for id_{R}.
Interpreting a graphical diagram as a history of events that have taken place, as we do, the fact that id_{L} factors through I means that, in any observable history of this experiment, whatever input we give the process, the output will be independent of it. Clearly such objects L are quite degenerate.

Exercise 3.4

(a) Like any vector in $R \otimes L$, we can write $\eta(1)$ as $\sum_{j=1}^{m} z_{j} x_{j} \otimes y_{j}$ for $z_{j} \in \mathbb{C}$, $x_{j} \in R$, and $y_{j} \in L$, where m is some finite number. Developing each x_{j} on the basis $\left\{r_{i}\right\}$ and using bilinearity of the tensor product, we see that we can also write it as $\sum_{i=1}^{n} r_{i} \otimes l_{i}$ for $n=\operatorname{dim}(V)$ and $l_{i} \in L$. If we could also write it as $\sum_{i=1}^{n} r_{i} \otimes l_{i}^{\prime}$, then we would have $0=\sum_{i=1}^{n} r_{i} \otimes\left(l_{i}-l_{i}^{\prime}\right)$. Because r_{i} forms a basis, it would follow that $l_{i}=l_{i}^{\prime}$ for each i. Hence the l_{i} are unique.
(b) Use the snake equation:

$$
\begin{aligned}
l & =\operatorname{id}_{L}(l) \\
& =\left(\varepsilon \otimes \operatorname{id}_{L}\right) \circ\left(\operatorname{id}_{L} \otimes \eta\right)(l) \\
& =\left(\varepsilon \otimes \operatorname{id}_{L}\right)\left(\sum_{i} l \otimes r_{i} \otimes l_{i}\right) \\
& =\sum_{i} \varepsilon\left(l \otimes r_{i}\right) l_{i} .
\end{aligned}
$$

(c) Similarly, it follows from the snake equation that $r_{i}=\sum_{k} \varepsilon\left(l_{k} \otimes r_{i}\right) r_{k}$. Suppose that $l_{i}=l_{j}$. Because $\left\{r_{k}\right\}$ are linearly independent, then $\varepsilon\left(l_{i} \otimes r_{i}\right)=1$, and $\varepsilon\left(l_{k} \otimes r_{i}\right)=0$ for $k \neq i$. Hence $\varepsilon\left(l_{j} \otimes r_{i}\right)=1$, and it follows that $i=j$, and so $r_{i}=r_{j}$. So f is injective.
(d) First notice that the standard form unit and counit indeed satisfy the snake equation. For the converse, combine the previous parts with Lemma 3.5.
Alternatively, pick a basis $\left\{r_{i}\right\}_{i=1}^{n}$ for R as before. Write $\eta(1)$ as $\sum_{j=1}^{m}=$ $x_{j} \otimes y_{j}$. Now develop $x_{j}=\sum_{k=1}^{n} z_{j k} r_{k}$ on the r_{i} basis. Then:

$$
\eta(1)=\sum_{j=1}^{m} x_{j} \otimes y_{j}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{m}\left(\sum_{k=1}^{n} z_{j k} r_{k}\right) \otimes y_{j} \\
& =\sum_{k=1}^{n} r_{k} \otimes\left(\sum_{j=1}^{m} z_{j k} y_{j}\right)
\end{aligned}
$$

Now take $l_{j}=z_{j k} y_{j}$, and apply parts (a), (b), and (c).

Exercise 3.5

(a) A Hilbert space is in particular a vector space. In the previous exercise, we may start by choosing $\left\{r_{i}\right\}$ to be orthonormal.
(b) First, compute that $\eta^{\dagger}\left(r_{i} \otimes l_{j}\right)=\left\langle l_{i} \mid l_{j}\right\rangle$:

$$
\begin{aligned}
\left\langle\eta(1) \mid r_{i} \otimes l_{j}\right\rangle & =\sum_{k}\left\langle r_{k} \mid r_{i}\right\rangle\left\langle l_{k} \mid l_{j}\right\rangle \\
& =\left\langle l_{i} \mid l_{j}\right\rangle \\
& =\left\langle 1 \mid \eta^{\dagger}\left(r_{i} \otimes l_{j}\right)\right\rangle .
\end{aligned}
$$

Hence dagger duality shows that $\varepsilon\left(l_{i} \otimes r_{j}\right)=\eta^{\dagger} \circ \sigma\left(l_{i} \otimes r_{j}\right)=\eta^{\dagger}\left(r_{j} \otimes l_{i}\right)=$ $\left\langle l_{j} \mid l_{i}\right\rangle$. But part (a) shows that also $\varepsilon\left(l_{i} \otimes r_{j}\right)=\delta_{i j}$. Hence $\left\langle l_{i} \mid l_{j}\right\rangle=\delta_{i j}$, making $\left\{l_{i}\right\}$ orthonormal.

Exercise 3.6

First notice that the standard form indeed satisfies the snake equations.
Second, if η and ε witness $L \dashv R$, then for each $r \in R$ there exists $l \in L$ such that $(\bullet,(r, l)) \in \eta$ by one snake equation. But there can be at most one such l because of the other snake equation. More precisely:

$$
\begin{aligned}
\{(\bullet, l)\} & =\left(\varepsilon \otimes \operatorname{id}_{L}\right) \circ\left(\operatorname{id}_{L} \otimes \eta\right)(l, \bullet) \\
& =\left(\varepsilon \otimes \operatorname{id}_{L}\right)(\{l\} \times \eta) \\
& =\bigcup_{\left(r, l^{\prime}\right) \in \eta} \varepsilon(l, r) \times\left\{l^{\prime}\right\}
\end{aligned}
$$

So if $\left(r, l^{\prime}\right) \in \eta$ and $(l, r) \in \varepsilon$, then $l=l^{\prime}$. Thus $f(r)=l$ defines an isomorphism $R \xrightarrow{f} L$ that makes η of the standard form. By Lemma 3.5, also ε must be of the standard form.

Third, observe that if $f \neq f^{\prime}$, then $\eta \neq \eta^{\prime}$. Hence different choices of isomorphism $R \simeq L$ yield different (co)unit maps.

Finally, notice that any isomorphism is a unitary.

