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Introduction to Quantum Programming and Seman-
tics: solutions

Exercise 1.13

The axiom applying to each region can be deduced from its number of non-
identity sides: 2 for invertibility, 3 for triangle, 4 for naturality, and 5 for
pentagon.



2

I
⊗

I

I
I
⊗
I

I
⊗
I

I
⊗

(I
⊗

I
)

(I
⊗
I
)
⊗

I
((
I
⊗

I
)
⊗
I
)
⊗

I

(I
⊗

(I
⊗
I
))
⊗
I

(I
⊗
I
)
⊗

I

(I
⊗
I
)
⊗
(I

⊗
I
)

I
⊗
(I

⊗
I
)

I
⊗
((
I
⊗
I
)
⊗

I
)

I
⊗
(I

⊗
(I

⊗
I
))

I

I
⊗

I

I
I
⊗

I

λ
I

ρ
I

λ
I ρ
I

ρ
-1 I

λ
-1 I

λ
-1 I
⊗
I

α
I
,I

,I

λ
-1 I

I
⊗

ρ
I

α
I
⊗
I
,I

,I

(I
⊗

I
)
⊗

λ
I

ρ
I
⊗
I

α
I
,I

,I
⊗

I

ρ
I
⊗
(I

⊗
I
)

(I
⊗

ρ
I
)
⊗

I
α
I
,I

⊗
I
,I

I
⊗

(ρ
I
⊗

I
)

I
⊗

α
I
,I

,I

I
⊗

(I
⊗

λ
I
)

α
I
,I

,I

α
I
,I

,I
⊗
I

ρ
I
⊗
I
⊗

I

ρ
(I

⊗
I
)⊗

I

ρ
I
⊗
I

ρ
-1 I
⊗

II
⊗

λ
I



3

Exercise 3.1

Suppose that η is the morphism I
λ−1
i I ⊗ I r⊗l R⊗ L. Then

L = = r l
=

r

l

A similar argument holds for idR.
Interpreting a graphical diagram as a history of events that have taken place,

as we do, the fact that idL factors through I means that, in any observable
history of this experiment, whatever input we give the process, the output will
be independent of it. Clearly such objects L are quite degenerate.

Exercise 3.4

(a) Like any vector in R ⊗ L, we can write η(1) as
∑m

j=1 zjxj ⊗ yj for zj ∈ C,
xj ∈ R, and yj ∈ L, where m is some finite number. Developing each xj

on the basis {ri} and using bilinearity of the tensor product, we see that
we can also write it as

∑n
i=1 ri ⊗ li for n = dim(V ) and li ∈ L. If we could

also write it as
∑n

i=1 ri ⊗ l′i, then we would have 0 =
∑n

i=1 ri ⊗ (li − l′i).
Because ri forms a basis, it would follow that li = l′i for each i. Hence the
li are unique.

(b) Use the snake equation:

l = idL(l)

= (ε⊗ idL) ◦ (idL ⊗ η)(l)

= (ε⊗ idL)(
∑
i

l ⊗ ri ⊗ li)

=
∑
i

ε(l ⊗ ri)li.

(c) Similarly, it follows from the snake equation that ri =
∑

k ε(lk ⊗ ri)rk.
Suppose that li = lj. Because {rk} are linearly independent, then
ε(li ⊗ ri) = 1, and ε(lk ⊗ ri) = 0 for k ̸= i. Hence ε(lj ⊗ ri) = 1, and
it follows that i = j, and so ri = rj. So f is injective.

(d) First notice that the standard form unit and counit indeed satisfy the snake
equation. For the converse, combine the previous parts with Lemma 3.5.

Alternatively, pick a basis {ri}ni=1 for R as before. Write η(1) as
∑m

j=1 =
xj ⊗ yj. Now develop xj =

∑n
k=1 zjkrk on the ri basis. Then:

η(1) =
m∑
j=1

xj ⊗ yj
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=
m∑
j=1

(
n∑

k=1

zjkrk)⊗ yj

=
n∑

k=1

rk ⊗ (
m∑
j=1

zjkyj)

Now take lj = zjkyj, and apply parts (a), (b), and (c).

Exercise 3.5

(a) A Hilbert space is in particular a vector space. In the previous exercise, we
may start by choosing {ri} to be orthonormal.

(b) First, compute that η†(ri ⊗ lj) = ⟨li|lj⟩:

⟨η(1)|ri ⊗ lj⟩ =
∑
k

⟨rk |ri⟩⟨lk |lj⟩

= ⟨li|lj⟩
= ⟨1|η†(ri ⊗ lj)⟩.

Hence dagger duality shows that ε(li ⊗ rj) = η† ◦ σ(li ⊗ rj) = η†(rj ⊗ li) =
⟨lj |li⟩. But part (a) shows that also ε(li ⊗ rj) = δij. Hence ⟨li |lj⟩ = δij,
making {li} orthonormal.

Exercise 3.6

First notice that the standard form indeed satisfies the snake equations.
Second, if η and ε witness L ⊣ R, then for each r ∈ R there exists l ∈ L such

that (•, (r, l)) ∈ η by one snake equation. But there can be at most one such l
because of the other snake equation. More precisely:

{(•, l)} = (ε⊗ idL) ◦ (idL ⊗ η)(l, •)
= (ε⊗ idL)({l} × η)

=
⋃

(r,l′)∈η

ε(l, r)× {l′}

So if (r, l′) ∈ η and (l, r) ∈ ε, then l = l′. Thus f(r) = l defines an isomorphism
R f L that makes η of the standard form. By Lemma 3.5, also ε must be of the
standard form.

Third, observe that if f ̸= f ′, then η ̸= η′. Hence different choices of
isomorphism R ≃ L yield different (co)unit maps.

Finally, notice that any isomorphism is a unitary.


