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Introduction to Quantum Programming and Seman-
tics: solutions

Exercise 1.13

The axiom applying to each region can be deduced from its number of non-
identity sides: 2 for invertibility, 3 for triangle, 4 for naturality, and 5 for
pentagon.
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Exercise 3.1

Suppose that 7 is the morphism [ AL, 1®I %, R L. Then

IPRET

A similar argument holds for idy.

Interpreting a graphical diagram as a history of events that have taken place,
as we do, the fact that id; factors through / means that, in any observable
history of this experiment, whatever input we give the process, the output will
be independent of it. Clearly such objects L are quite degenerate.

Exercise 3.4

(a) Like any vector in R ® L, we can write 7(1) as » 7", zjz; ® y; for 2z; € C,
z; € R, and y; € L, where m is some finite number. Developing each z;
on the basis {r;} and using bilinearity of the tensor product, we see that
we can also write it as ) ., r; ® [; for n = dim(V') and [; € L. If we could
also write it as ) ;' , r; ® I}, then we would have 0 = >0 r; @ (I; — I}).

Because r; forms a basis, it would follow that [; = [ for each i. Hence the
[; are unique.

(b) Use the snake equation:
l=1id(l)
= (e®idy) o (id;, ® n)(1)
= (e®id) ) l®rnel)

=> el @)l

(c) Similarly, it follows from the snake equation that r; = >, e(ly ® 7)7%.
Suppose that /; = [;. Because {r;} are linearly independent, then
e(l; ®r;) =1, and e(ly ® ;) = 0 for k # i. Hence ¢(I; ® r;) = 1, and
it follows that i = j, and so r; = r;. So f is injective.

(d) First notice that the standard form unit and counit indeed satisfy the snake
equation. For the converse, combine the previous parts with Lemma 3.5.

Alternatively, pick a basis {r;}7_, for R as before. Write (1) as > 7", =
z; ® y;. Now develop z; = >"7'_, z;jxr), on the r; basis. Then:

n(1) =Y z;®y;
j=1
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Now take [; = z;,y;, and apply parts (a), (b), and (c).

Exercise 3.5

(a) A Hilbert space is in particular a vector space. In the previous exercise, we
may start by choosing {r;} to be orthonormal.

(b) First, compute that n'(r; ® ;) = (l;|1;):

> (e (L)

k

(L:]1;)

(0" (ri @ 1))).

Hence dagger duality shows that e(l; @ ;) = nf oo (l; @ r;) = 0 (r; ® I;
) pu—

)
(I;]1;). But part (a) shows that also ¢(I; ® r; d;;. Hence (l;|l;) = d;,
making {/;} orthonormal.

(n(D)]ri @ 1;)

Exercise 3.6

First notice that the standard form indeed satisfies the snake equations.

Second, if n and ¢ witness L - R, then for each » € R there exists [ € L such
that (e, (r,1)) € n by one snake equation. But there can be at most one such !
because of the other snake equation. More precisely:

{(o,0)} = (e®idy) o (idr @n)(l,®)
= (e@idp)({l} xn)
= | eltr)x {1}

(rl")en

Soif (r,l') € nand (I,r) € ¢, then [ = I'. Thus f(r) = [ defines an isomorphism
R L [ that makes 7 of the standard form. By Lemma 3.5, also ¢ must be of the
standard form.

Third, observe that if f # f/, then n # . Hence different choices of
isomorphism R ~ L yield different (co)unit maps.

Finally, notice that any isomorphism is a unitary.



