Introduction to Quantum Programming and Semantics: tutorial 5 answers

Exercise 3.11

Let $X \xrightarrow{R} X$. Compute:

$$
\begin{aligned}
\operatorname{Tr}(R) & =\varepsilon \circ\left(R \otimes \operatorname{id}_{X}\right) \circ \sigma_{X, X} \circ \eta \\
& =\{((x, x), \bullet) \mid x \in X\} \circ\left(R \otimes \operatorname{id}_{X}\right) \circ\{((x, y),(y, x)) \mid x, y \in X\} \circ\{(\bullet,(x, x)) \mid x \in X\} \\
& =\{((x, x), \bullet) \mid x \in X\} \circ\left(R \otimes \operatorname{id}_{X}\right) \circ\{(\bullet,(x, x)) \mid x \in X\} \\
& =\{((x, x), \bullet) \mid x \in X\} \circ\{(\bullet,(y, x)) \mid(x, y) \in R\} \\
& =\{(\bullet, \bullet) \mid \exists x \in X: x R x\} .
\end{aligned}
$$

So $\operatorname{Tr}(R)=1$ when R has a fixed point, and $\operatorname{Tr}(R)=0$ otherwise.

Exercise 3.12

(a) Say $f=g^{\dagger} \circ g$ for $A \xrightarrow{g} B$. Now use dagger duality:

$$
\begin{aligned}
\operatorname{Tr}_{A}(f) & =\varepsilon_{A} \circ\left(g^{\dagger} \otimes \operatorname{id}_{A^{*}}\right) \circ\left(g \otimes \operatorname{id}_{A^{*}}\right) \circ \sigma_{A^{*}, A} \circ \eta_{A} \\
& =\varepsilon_{A} \circ\left(g^{\dagger} \otimes \operatorname{id}_{A^{*}}\right) \circ \sigma_{A^{*}, B} \circ\left(\operatorname{id}_{A^{*}} \otimes g\right) \circ \eta_{A} \\
& =\eta_{A}^{\dagger} \circ \sigma_{A, A^{*}} \circ\left(g^{\dagger} \otimes \operatorname{id}_{A^{*}}\right) \circ \sigma_{A^{*}, B} \circ\left(\operatorname{id}_{A^{*}} \otimes g\right) \circ \eta_{A} \\
& =\eta_{A}^{\dagger} \circ\left(\mathrm{id}_{A^{*}} \otimes g^{\dagger}\right) \circ\left(\mathrm{id}_{A^{*}} \otimes g\right) \circ \eta_{A} .
\end{aligned}
$$

(b) If $f=g^{\dagger} \circ g$, then $f^{*}=g^{*} \circ\left(g^{\dagger}\right)^{*}=\left(g^{*}\right) \circ\left(g^{*}\right)^{\dagger}$.
(c)

$$
\begin{aligned}
\operatorname{Tr}_{A^{*}}\left(f^{*}\right) & =\varepsilon_{A^{*}} \circ\left(f^{*} \otimes \operatorname{id}_{A}\right) \circ \sigma_{A, A^{*}} \circ \eta_{A^{*}} \\
& =\varepsilon_{A^{*}} \circ\left(\operatorname{id}_{A^{*}} \otimes f\right) \circ \sigma_{A, A^{*}} \circ \eta_{A^{*}} \\
& =\varepsilon_{A} \circ \sigma_{A, A^{*}} \circ\left(\operatorname{id}_{A^{*}} \otimes f\right) \circ \sigma_{A, A^{*}} \circ \sigma_{A^{*}, A} \circ \eta_{A} \\
& =\operatorname{Tr}_{A}(f) .
\end{aligned}
$$

(d) This is graphically immediately clear.
(e) Suppose $f=a^{\dagger} \circ a$ and $g=b^{\dagger} \circ b$; use the cyclic property to see $\operatorname{Tr}(g \circ f)=\operatorname{Tr}\left(\left(b^{\dagger} \circ a\right)^{\dagger} \circ\left(b^{\dagger} \circ a\right)\right)$, and then use part (a) to see that this scalar is positive.

Exercise 3.13

If $A \otimes B \xrightarrow{h} A \otimes B$ is an inverse of $f \otimes g$, take f^{-1} to be $\operatorname{Tr}_{B}((\mathrm{id} \otimes g) \circ h) \bullet$ $\operatorname{dim}(B)^{-1}$. This works in any monoidal category by dropping the braid from the trace/dimension.

