Introduction to Quantum Programming and Semantics: tutorial solutions

Exercise 4.1

The comonoid structure on I is given by $\left(I, \lambda_{I}^{-1}, \mathrm{id}_{I}\right)$. The definition of copyability and the first part of the definition of comonoid homomorphism are both described by the same equation in this case, namely:

$$
d \circ a=(a \otimes a) \circ \lambda_{I}^{-1}
$$

This means that a state a is copyable iff a satisfies the first equation in the definition of comonoid homomorphism. Note that in general, a copyable state a does not satisfy the other condition, namely deletion. A counter example is taking a zero state.

Exercise 4.2

(a) The graphical proof for this part is very simple (simply plug in both u and u^{\prime} into m), but we present a symbolic one for comparison.
Observe that the following equation holds because of naturality of ρ :

$$
\rho_{A} \circ\left(u \otimes \operatorname{id}_{I}\right)=u \circ \rho_{I}
$$

Since $\lambda_{I}=\rho_{I}$, we have:

$$
\rho_{A} \circ\left(u \otimes \operatorname{id}_{I}\right)=u \circ \rho_{I}=u \circ \lambda_{I}
$$

Using the same argument, but for λ and u^{\prime} we get:

$$
\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u^{\prime}\right)=u^{\prime} \circ \lambda_{I}=u^{\prime} \circ \rho_{I}
$$

We have:

$$
\begin{array}{llr}
& m \circ\left(\mathrm{id}_{A} \otimes u^{\prime}\right)=\rho_{A} \\
\Longrightarrow & m \circ\left(\mathrm{id}_{A} \otimes u^{\prime}\right) \circ\left(u \otimes \mathrm{id}_{I}\right)=\rho_{A} \circ\left(u \otimes \mathrm{id}_{I}\right) & \text { (compose on right) } \\
\Longrightarrow & m \circ\left(\mathrm{id}_{A} \otimes u^{\prime}\right) \circ\left(u \otimes \mathrm{id}_{I}\right)=u \circ \lambda_{I} & \text { (above equation) } \\
\Longrightarrow & m \circ\left(u \otimes u^{\prime}\right)=u \circ \lambda_{I} & \text { (interchange law) } \\
\Longrightarrow & m \circ\left(u \otimes \mathrm{id}_{A}\right) \circ\left(\mathrm{id}_{I} \otimes u^{\prime}\right)=u \circ \lambda_{I} & \text { (interchange law) } \\
\Longrightarrow & \lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u^{\prime}\right)=u \circ \lambda_{I} & \text { (monoid axiom) } \\
\Longrightarrow & u^{\prime} \circ \lambda_{I}=u \circ \lambda_{I} & \text { (above equation) } \\
\Longrightarrow & u^{\prime}=u & \left(\lambda_{I}\right. \text { is invertible) }
\end{array}
$$

Note that we have used only one of the equations for u^{\prime}.

Exercise 4.3

For the whole exercise, the graphical proof is very simple and straightforward. However, for comparison, we show a symbolic solution instead.
(a) The trick is to plug in the state $\left(u_{2} \otimes u_{1} \otimes u_{1} \otimes u_{2}\right)$.

$$
\begin{aligned}
m_{1} \circ\left(m_{2} \otimes m_{2}\right) \circ\left(u_{2} \otimes u_{1} \otimes u_{1} \otimes u_{2}\right) & =m_{2} \circ\left(m_{1} \otimes m_{1}\right) \circ\left(\mathrm{id}_{A} \circ \sigma \circ \mathrm{id}_{A}\right) \circ \\
& \left(u_{2} \otimes u_{1} \otimes u_{1} \otimes u_{2}\right) \\
& \not \\
m_{1} \circ\left(\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u_{1}\right)\right) \otimes\left(\rho_{A} \circ\left(u_{1} \otimes \mathrm{id}_{I}\right)\right) & =m_{2} \circ\left(m_{1} \otimes m_{1}\right) \circ\left(u_{2} \otimes u_{1} \otimes u_{1} \otimes u_{2}\right) \\
& \Longrightarrow \\
m_{1} \circ\left(\left(u_{1} \circ \lambda_{I}\right) \otimes\left(u_{1} \circ \rho_{I}\right)\right) & =m_{2} \circ\left(\left(\rho_{A} \circ\left(u_{2} \otimes \mathrm{id}_{I}\right)\right) \otimes\left(\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u_{2}\right)\right)\right) \\
& \Longrightarrow \\
\left.m_{1} \circ\left(u_{1} \otimes u_{1}\right) \circ\left(\lambda_{I} \otimes \rho_{I}\right)\right) & =m_{2} \circ\left(\left(u_{2} \circ \rho_{I}\right) \otimes\left(u_{2} \circ \lambda_{I}\right)\right) \\
& \Longrightarrow \\
\left.\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u_{1}\right) \circ\left(\lambda_{I} \otimes \rho_{I}\right)\right) & =m_{2} \circ\left(u_{2} \otimes u_{2}\right) \circ\left(\rho_{I} \otimes \lambda_{I}\right) \\
& \Longrightarrow \\
\lambda_{A} \circ\left(\operatorname{id}_{I} \otimes u_{1}\right) & =m_{2} \circ\left(u_{2} \otimes u_{2}\right) \\
& \Longrightarrow \\
\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u_{1}\right) & =\lambda_{A} \circ\left(\mathrm{id}_{I} \otimes u_{2}\right) \\
& \Longrightarrow \\
u_{1} \circ \lambda_{I} & =u_{2} \circ \lambda_{I} \\
& \Longrightarrow \\
u_{1} & =u_{2}
\end{aligned}
$$

(b) From now on we will write $u=u_{1}=u_{2}$.

Plugging in the map $\left(\mathrm{id}_{A} \otimes u \otimes u \otimes \mathrm{id}_{A}\right)$ to both sides of the equation yields the desired result.

$$
\begin{aligned}
m_{1} \circ\left(m_{2} \otimes m_{2}\right) \circ\left(\mathrm{id}_{A} \otimes u \otimes u \otimes \mathrm{id}_{A}\right) & =m_{2} \circ\left(m_{1} \otimes m_{1}\right) \circ\left(\mathrm{id}_{A} \circ \sigma \circ \mathrm{id}_{A}\right) \circ \\
& \left(\operatorname{id}_{A} \otimes u \otimes u \otimes \operatorname{id}_{A}\right) \\
& \Longrightarrow \\
m_{1} \circ\left(m_{2} \otimes m_{2}\right) \circ\left(\mathrm{id}_{A} \otimes u \otimes u \otimes \operatorname{id}_{A}\right) & =m_{2} \circ\left(m_{1} \otimes m_{1}\right) \circ\left(\operatorname{id}_{A} \otimes u \otimes u \otimes \operatorname{id}_{A}\right) \\
& \Longrightarrow \\
m_{1} \circ\left(\rho_{A} \otimes \lambda_{A}\right) & =m_{2} \circ\left(\rho_{A} \otimes \lambda_{A}\right) \\
& \Longrightarrow \\
m_{1} & =m_{2}
\end{aligned}
$$

(c) We will write $m=m_{1}=m_{2}$.

This time, the trick is to plug in the map $\left(u \otimes \operatorname{id}_{A} \otimes \operatorname{id}_{A} \otimes u\right)$ to both sides of the equation. We get:

$$
\begin{aligned}
m \circ(m \otimes m) \circ\left(u \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes u\right) & =m \circ(m \otimes m) \circ\left(\mathrm{id}_{A} \circ \sigma \circ \mathrm{id}_{A}\right) \circ \\
& \left(u \not \mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes u\right) \\
& \Longrightarrow \\
m \circ\left(\lambda_{A} \otimes \rho_{A}\right) & =m \circ(m \otimes m) \circ\left(u \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{A} \otimes u\right) \circ \\
& \left(\mathrm{id}_{I} \circ \sigma \circ \mathrm{id}_{I}\right) \\
& \Longrightarrow \\
m \circ\left(\lambda_{A} \otimes \rho_{A}\right) & =m \circ\left(\lambda_{A} \otimes \rho_{A}\right) \circ\left(\mathrm{id}_{I} \circ \sigma \circ \mathrm{id}_{I}\right) \\
& \Longrightarrow \\
m \circ\left(\lambda_{A} \otimes \rho_{A}\right) & =m \circ \sigma \circ\left(\lambda_{A} \otimes \rho_{A}\right) \\
& \Longrightarrow \\
m & =m \circ \sigma
\end{aligned}
$$

Exercise 4.4

(Note: This is ghastly without graphical calculus.)
Let A and B be arbitrary objects in our category. Set $B^{A}=B \otimes A^{*}$. We define the evaluation map ev : $\left(B \otimes A^{*}\right) \otimes A \rightarrow B$ by ev $=\rho_{B} \circ\left(\operatorname{id}_{B} \otimes \varepsilon_{A}\right) \circ \alpha_{B, A^{*}, A^{*}}^{-1}$. For a given $f: X \otimes A \rightarrow B$, define $g: X \rightarrow B \otimes A^{*}$ by $g=\left(f \otimes \operatorname{id}_{A^{*}}\right) \circ \alpha_{X, A, A^{*}}^{-1} \circ\left(\mathrm{id}_{X} \otimes\right.$ $\left.\eta_{A}\right) \circ \rho_{X}^{-1}$. From the snake equations it follows that $f=\mathrm{ev} \circ\left(g \otimes \mathrm{id}_{A}\right)$. To show g is unique, assume $f=\mathrm{ev} \circ\left(g^{\prime} \otimes \mathrm{id}_{A}\right)$. Then we can precompose both sides with $\alpha_{X, A, A^{*}}^{-1} \circ\left(\mathrm{id}_{X} \otimes \eta_{A}\right) \circ \rho_{X}^{-1}$ and tensor with $\mathrm{id}_{A^{*}}$ on the right to get $\left(f \otimes \mathrm{id}_{A^{*}}\right) \circ$ $\alpha_{X, A, A^{*}}^{-1} \circ\left(\mathrm{id}_{X} \otimes \eta_{A}\right) \circ \rho_{X}^{-1}=\left(\mathrm{ev} \otimes \mathrm{id}_{A}\right) \circ\left(\left(g^{\prime} \otimes \mathrm{id}_{A^{*}}\right) \otimes \mathrm{id}_{A}\right) \circ \alpha_{X, A, A^{*}}^{-1} \circ\left(\mathrm{id}_{X} \otimes \eta_{A}\right) \circ \rho_{X}^{-1}$, or $g=g^{\prime}$ (where the LHS is transformed according to the snake equations).

Exercise 4.5

Let $(A, \cdot, 1)$ be a monoid in $($ Set, $\times, 1)$ that is partially ordered in a way that $a \cdot c \leq b \cdot c$ and $c \cdot a \leq c \cdot b$ when $a \leq b$.

Consider a monoidal category \mathcal{C}, with objects $a \in A$. In \mathcal{C}, there is a unique morphism $a \rightarrow b$ between two objects iff $a \leq b$. Thus, any homset in \mathcal{C} is either empty or contains exactly one morphism.

The tensor product on objects a and b in \mathcal{C} is given by:

$$
a \otimes b=a \cdot b
$$

and on morphisms $f: a \rightarrow b, g: c \rightarrow d$ as:

$$
f \otimes g=a \cdot c \rightarrow b \cdot d
$$

which is well-defined because of the way the partial order on A is given.

The tensor unit in \mathcal{C} is 1 . Note, that $1 \otimes a=a=a \otimes 1$. Thus, the left and right unitors (λ_{a}, ρ_{a}) are just the identity morphisms. Similarly, $(a \otimes b) \otimes c=a \otimes(b \otimes c)$ due to associativity in the monoid, so the associator α is also just the identity.

We will prove that an object of this monoidal category has a dual if and only if it has an inverse in A.
(LHS \Longrightarrow RHS)
Suppose $l \in A$ has a dual $r \in A$. Thus $l \vdash r$ and $r \vdash l$. From the first duality, we get that the unit and counit morphisms exist which means

$$
\begin{aligned}
1 & \leq r \cdot l \\
l \cdot r & \leq 1
\end{aligned}
$$

Similarly, from the second duality, we get:

$$
\begin{aligned}
1 & \leq l \cdot r \\
r \cdot l & \leq 1
\end{aligned}
$$

By combining these four inequalities, we get:

$$
\begin{aligned}
& 1 \leq r \cdot l \leq 1 \\
& 1 \leq l \cdot r \leq 1
\end{aligned}
$$

Thus, $r \cdot l=1=l \cdot r$, which means that r is the inverse of l and vice-versa.
(RHS \Longrightarrow LHS)
Assume that an object $l \in A$ has an inverse $l^{-1} \in A$. We clearly have $1 \leq l \cdot l^{-1} \leq 1$ and $1 \leq l^{-1} \cdot l \leq 1$ which means the unit and count morphisms exist for both dualities ($l \vdash r$ and $r \vdash l$). The snake equations are then satisfied trivially. Therefore, l has a dual, namely l^{-1}.

An ordered abelian group induces a strict symmetry on the category, i.e. the symmetry is an identity: $a b=b a$. Furthermore, note that the dual of the dual of an object a is a itself. Therefore, because cups and caps are trivial, the conditions of a compact category are satisfied.

For the final part, if we have daggers, then

$$
a \leq b \Longrightarrow b \leq a \Longrightarrow a=b
$$

Thus, the category is discrete (only has identity morphisms).

