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Introduction to Quantum Programming and Seman-
tics: tutorial solutions

Exercise 4.1

The comonoid structure on [ is given by (I,A\;',id;). The definition of
copyability and the first part of the definition of comonoid homomorphism are
both described by the same equation in this case, namely:

doa=(a®a)o\*

This means that a state a is copyable iff a satisfies the first equation in the
definition of comonoid homomorphism. Note that in general, a copyable state
a does not satisfy the other condition, namely deletion. A counter example is
taking a zero state.

Exercise 4.2

(a) The graphical proof for this part is very simple (simply plug in both « and
v’ into m), but we present a symbolic one for comparison.

Observe that the following equation holds because of naturality of p:
pao(u®idy) =wuopr
Since \; = p;, we have:
pac(u®idy) =uopr=uo;
Using the same argument, but for A and v’ we get:

Mo (idj@u)=u ol =u"op;

We have:
mo (idg®u') = pa
= mo(ida®u)o(u®id;) =pao(u®id;) (compose on right)
= mo(idg®u)o(u®id;) =uoA; (above equation)
= mo(u®u)=uo; (interchange law)
= mo(u®idy)o (id;@u') =uo); (interchange law)
= Mo(id;®u)=wuo; (monoid axiom)
— dWol=uo); (above equation)
= u=u (\; is invertible)

Note that we have used only one of the equations for «'.
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Exercise 4.3

For the whole exercise, the graphical proof is very simple and straightforward.
However, for comparison, we show a symbolic solution instead.

(a) The trick is to plug in the state (us ® u; ® u; ® us).

my o (Mg ® ma) o (g ® Uy ® u; @ ug) =mg o (my ®my)o (idg oo oidy)o
(g ®@ U ® uy ® ug)

_
mio(Ago(idf®up)) ® (pao(ug ®idy)) =mao (my @ my) o (U @ uy ® up ® us)
S
my o ((u1 0 A1) @ (u1 0 pr)) =myo((pao (uz ®idr)) ® (Aa o (id; @ us)))
=
my o (ug ®ur) o (Ar ® pr)) = ma o ((uz © pr) ® (uz © Ar))
_—
Aao (id; ® uy) o (A @ pr)) =ma o (ug ® ug) o (pr @ Ap)
_—
Aa o (idf ® up) = mg o (ug @ uy)
_
Aao(id; ® up) = Mg o (id; ® ug)
_

UL O] = Uy O A
—

U1 = Uy

(b) From now on we will write v = u; = us.

Plugging in the map (id4 ® © ® u®id 4) to both sides of the equation yields
the desired result.

myi o (my®msz)o (idy ®uu®ids) =m0 (m; ®my)o (idgoooidy)o
(ida ®@u®u®idy)
—
myi o (my®@msz)o (idg @uRu®ids) =meo(m; @my)o (idg @ u®u®idy)
_—
mi 0 (pa @ Aa) =mz 0 (pa ® Aa)
—

mi1 = Mo

(c) We will write m = m; = mo.



This time, the trick is to plug in the map (v ® id4 ® id4 ® u) to both sides
of the equation. We get:

mo(m®@m)o(u®idy ®idy ® u) =mo (m®m)o (idg oo oidy)o

(u®idy ®idg ® u)
_

mo (Ag®pa)=mo(m®m)o(u®idy ®idg ® u)o
(id; o o 0idy)
=

mo (Mg ® pa) =mo (Mg ® pa)o (id; oo oidy)
_—

mo (A ®pa) =moco(Aa® pa)
_

m=moo

Exercise 4.4

(Note: This is ghastly without graphical calculus.)

Let A and B be arbitrary objects in our category. Set B4 = B® A*. We define
the evaluation map ev : (B® A*) @ A— B by ev = pg o (idp @ €4) 0 g 4. 4. For
agiven f: X® A— B, defineg: X - B® A*by g = (f ®id4-) Oa;(,lA,A* o(idy ®
n4) o px . From the snake equations it follows that f = evo (g ®id,). To show g
is unique, assume f = ev o (¢’ ® id4). Then we can precompose both sides with
a4 40 0 (idx ®na) o py' and tensor with id 4. on the right to get (f ® ida-) o
axia a0 (idx @14) 0 py = (ev@ida) o (¢ ®ida-) ®ida) oayly 4.0 (idx @na) 0 py ',
or g = ¢’ (where the LHS is transformed according to the snake equations).

Exercise 4.5

Let (A,-,1) be a monoid in (Set, x,1) that is partially ordered in a way that
a-c<b-candc-a <c-bwhena <b.

Consider a monoidal category C, with objects a € A. In C, there is a unique
morphism a — b between two objects iff « < b. Thus, any homset in C is either
empty or contains exactly one morphism.

The tensor product on objects a and b in C is given by:

a®b=a-b
and on morphisms f :a—1b, g : c—d as:
f®g=a-c—b-d

which is well-defined because of the way the partial order on A is given.



The tensor unit in C is 1. Note, that 1 ® a = a = a® 1. Thus, the left and right
unitors (\,, p,) are just the identity morphisms. Similarly, (e ®b) ®c = a® (b®c)
due to associativity in the monoid, so the associator « is also just the identity.

We will prove that an object of this monoidal category has a dual if and only
if it has an inverse in A.

(LHS — RHS)

Suppose [ € A hasadual r € A. Thus [ F r and r - [. From the first duality,
we get that the unit and counit morphisms exist which means

1<r-1
[-r<1

Similarly, from the second duality, we get:

By combining these four inequalities, we get:

1<r-I<1
1<l-r<1

Thus, r -1l =1 = [ - r, which means that r is the inverse of [ and vice-versa.

(RHS = LHS)

Assume that an object | € A has an inverse [~! € A. We clearly have
1<l-I"*<1land1 <[ !-] < 1which means the unit and count morphisms
exist for both dualities (I - r and r I ). The snake equations are then satisfied
trivially. Therefore, [ has a dual, namely (.

An ordered abelian group induces a strict symmetry on the category, i.e. the
symmetry is an identity: ab = ba. Furthermore, note that the dual of the dual of
an object a is a itself. Therefore, because cups and caps are trivial, the conditions
of a compact category are satisfied.

For the final part, if we have daggers, then

a<b—=b<a=—a=0b

Thus, the category is discrete (only has identity morphisms).



