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Introduction to Quantum Programming and Seman-
tics: tutorial solutions

Exercise 4.1

The comonoid structure on I is given by (I, λ−1
I , idI). The definition of

copyability and the first part of the definition of comonoid homomorphism are
both described by the same equation in this case, namely:

d ◦ a = (a⊗ a) ◦ λ−1
I

This means that a state a is copyable iff a satisfies the first equation in the
definition of comonoid homomorphism. Note that in general, a copyable state
a does not satisfy the other condition, namely deletion. A counter example is
taking a zero state.

Exercise 4.2

(a) The graphical proof for this part is very simple (simply plug in both u and
u′ into m), but we present a symbolic one for comparison.

Observe that the following equation holds because of naturality of ρ:

ρA ◦ (u⊗ idI) = u ◦ ρI

Since λI = ρI , we have:

ρA ◦ (u⊗ idI) = u ◦ ρI = u ◦ λI

Using the same argument, but for λ and u′ we get:

λA ◦ (idI ⊗ u′) = u′ ◦ λI = u′ ◦ ρI

We have:

m ◦ (idA ⊗ u′) = ρA

=⇒ m ◦ (idA ⊗ u′) ◦ (u⊗ idI) = ρA ◦ (u⊗ idI) (compose on right)
=⇒ m ◦ (idA ⊗ u′) ◦ (u⊗ idI) = u ◦ λI (above equation)
=⇒ m ◦ (u⊗ u′) = u ◦ λI (interchange law)
=⇒ m ◦ (u⊗ idA) ◦ (idI ⊗ u′) = u ◦ λI (interchange law)
=⇒ λA ◦ (idI ⊗ u′) = u ◦ λI (monoid axiom)
=⇒ u′ ◦ λI = u ◦ λI (above equation)
=⇒ u′ = u (λI is invertible)

Note that we have used only one of the equations for u′.
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Exercise 4.3

For the whole exercise, the graphical proof is very simple and straightforward.
However, for comparison, we show a symbolic solution instead.

(a) The trick is to plug in the state (u2 ⊗ u1 ⊗ u1 ⊗ u2).

m1 ◦ (m2 ⊗m2) ◦ (u2 ⊗ u1 ⊗ u1 ⊗ u2) = m2 ◦ (m1 ⊗m1) ◦ (idA ◦ σ ◦ idA)◦
(u2 ⊗ u1 ⊗ u1 ⊗ u2)

=⇒
m1 ◦ (λA ◦ (idI ⊗ u1))⊗ (ρA ◦ (u1 ⊗ idI)) = m2 ◦ (m1 ⊗m1) ◦ (u2 ⊗ u1 ⊗ u1 ⊗ u2)

=⇒
m1 ◦ ((u1 ◦ λI)⊗ (u1 ◦ ρI)) = m2 ◦ ((ρA ◦ (u2 ⊗ idI))⊗ (λA ◦ (idI ⊗ u2)))

=⇒
m1 ◦ (u1 ⊗ u1) ◦ (λI ⊗ ρI)) = m2 ◦ ((u2 ◦ ρI)⊗ (u2 ◦ λI))

=⇒
λA ◦ (idI ⊗ u1) ◦ (λI ⊗ ρI)) = m2 ◦ (u2 ⊗ u2) ◦ (ρI ⊗ λI)

=⇒
λA ◦ (idI ⊗ u1) = m2 ◦ (u2 ⊗ u2)

=⇒
λA ◦ (idI ⊗ u1) = λA ◦ (idI ⊗ u2)

=⇒
u1 ◦ λI = u2 ◦ λI

=⇒
u1 = u2

(b) From now on we will write u = u1 = u2.

Plugging in the map (idA⊗u⊗u⊗ idA) to both sides of the equation yields
the desired result.

m1 ◦ (m2 ⊗m2) ◦ (idA ⊗ u⊗ u⊗ idA) = m2 ◦ (m1 ⊗m1) ◦ (idA ◦ σ ◦ idA)◦
(idA ⊗ u⊗ u⊗ idA)

=⇒
m1 ◦ (m2 ⊗m2) ◦ (idA ⊗ u⊗ u⊗ idA) = m2 ◦ (m1 ⊗m1) ◦ (idA ⊗ u⊗ u⊗ idA)

=⇒
m1 ◦ (ρA ⊗ λA) = m2 ◦ (ρA ⊗ λA)

=⇒
m1 = m2

(c) We will write m = m1 = m2.



3

This time, the trick is to plug in the map (u⊗ idA ⊗ idA ⊗ u) to both sides
of the equation. We get:

m ◦ (m⊗m) ◦ (u⊗ idA ⊗ idA ⊗ u) = m ◦ (m⊗m) ◦ (idA ◦ σ ◦ idA)◦
(u⊗ idA ⊗ idA ⊗ u)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ (m⊗m) ◦ (u⊗ idA ⊗ idA ⊗ u)◦

(idI ◦ σ ◦ idI)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ (λA ⊗ ρA) ◦ (idI ◦ σ ◦ idI)

=⇒
m ◦ (λA ⊗ ρA) = m ◦ σ ◦ (λA ⊗ ρA)

=⇒
m = m ◦ σ

Exercise 4.4

(Note: This is ghastly without graphical calculus.)
Let A and B be arbitrary objects in our category. Set BA = B⊗A∗. We define

the evaluation map ev : (B ⊗A∗)⊗A B by ev = ρB ◦ (idB ⊗ εA) ◦ α−1
B,A∗,A. For

a given f : X ⊗A B, define g : X B⊗A∗ by g = (f ⊗ idA∗) ◦α−1
X,A,A∗ ◦ (idX ⊗

ηA) ◦ ρ−1
X . From the snake equations it follows that f = ev ◦ (g⊗ idA). To show g

is unique, assume f = ev ◦ (g′ ⊗ idA). Then we can precompose both sides with
α−1
X,A,A∗ ◦ (idX ⊗ ηA) ◦ ρ−1

X and tensor with idA∗ on the right to get (f ⊗ idA∗) ◦
α−1
X,A,A∗ ◦(idX⊗ηA)◦ρ−1

X = (ev⊗ idA)◦((g′⊗ idA∗)⊗ idA)◦α−1
X,A,A∗ ◦(idX⊗ηA)◦ρ−1

X ,
or g = g′ (where the LHS is transformed according to the snake equations).

Exercise 4.5

Let (A, ·, 1) be a monoid in (Set,×, 1) that is partially ordered in a way that
a · c ≤ b · c and c · a ≤ c · b when a ≤ b.

Consider a monoidal category C, with objects a ∈ A. In C, there is a unique
morphism a b between two objects iff a ≤ b. Thus, any homset in C is either
empty or contains exactly one morphism.

The tensor product on objects a and b in C is given by:

a⊗ b = a · b

and on morphisms f : a b, g : c d as:

f ⊗ g = a · c b · d

which is well-defined because of the way the partial order on A is given.
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The tensor unit in C is 1. Note, that 1⊗a = a = a⊗1. Thus, the left and right
unitors (λa, ρa) are just the identity morphisms. Similarly, (a⊗b)⊗c = a⊗(b⊗c)
due to associativity in the monoid, so the associator α is also just the identity.

We will prove that an object of this monoidal category has a dual if and only
if it has an inverse in A.

(LHS =⇒ RHS)
Suppose l ∈ A has a dual r ∈ A. Thus l ⊢ r and r ⊢ l. From the first duality,

we get that the unit and counit morphisms exist which means

1 ≤ r · l
l · r ≤ 1

Similarly, from the second duality, we get:

1 ≤ l · r
r · l ≤ 1

By combining these four inequalities, we get:

1 ≤ r · l ≤ 1

1 ≤ l · r ≤ 1

Thus, r · l = 1 = l · r, which means that r is the inverse of l and vice-versa.
(RHS =⇒ LHS)
Assume that an object l ∈ A has an inverse l−1 ∈ A. We clearly have

1 ≤ l · l−1 ≤ 1 and 1 ≤ l−1 · l ≤ 1 which means the unit and count morphisms
exist for both dualities (l ⊢ r and r ⊢ l). The snake equations are then satisfied
trivially. Therefore, l has a dual, namely l−1.

An ordered abelian group induces a strict symmetry on the category, i.e. the
symmetry is an identity: ab = ba. Furthermore, note that the dual of the dual of
an object a is a itself. Therefore, because cups and caps are trivial, the conditions
of a compact category are satisfied.

For the final part, if we have daggers, then

a ≤ b =⇒ b ≤ a =⇒ a = b

Thus, the category is discrete (only has identity morphisms).


