Introduction to Quantum Programming and Semantics: solutions

Exercise 5.1

- (a) Follows directly from the coherence theorem.
- (b) We have seen before that the tensor product of a monoid is again a monoid. The same holds for comonoids. It is left to verify the Frobenius law:

(c) We will use the fact that the tensor product $A \otimes B$ of two spaces A, B that have duals A^*, B^* , is dual to the tensor product $A^* \otimes B^*$. We use the alternative definition of symmetric Frobenius structures in symmetric monoidal categories; however, it can also be shown directly.

(d) The tensor product of commutative frobenius structures is again a commutative frobenius structure by (a) and an argument similar to (b). It is left to show that the tensor product of special dagger Frobenius structures is special.

$$(3)$$

Exercise 5.2

(a)

Exercise 5.3

Note that a set containing exactly one nonzero state x_0 is trivially linearly independent. For n > 0, suppose $\{x_0, \ldots, x_n\}$ is a linearly dependent set of nonzero copyable states such that its subset $\{x_1, \ldots, x_n\}$ is linearly independent. Then $x_0 = \sum_{i=1}^n z_i x_i$ for suitable coefficients $z_i \in \mathbb{C}$. So

$$\sum_{i=1}^{n} z_i(x_i \otimes x_i) = \sum_{i=1}^{n} z_i d(x_i)$$
$$= d(x_0)$$

$$= (\sum_{i=1}^{n} z_i x_i) \otimes (\sum_{j=1}^{n} z_j x_j)$$
$$= \sum_{i,j=1}^{n} z_i z_j (x_i \otimes x_j).$$

We have assumed that $\{x_1, \ldots, x_n\}$ is linearly independent; hence $z_i^2 = z_i$ for all i, and $z_i z_j = 0$ for $i \neq j$. So $z_i = 0$ or $z_i = 1$ for all i. If $z_j = 1$, then $z_i = 0$ for all $i \neq j$, so $x_0 = x_j$, contrary to assumption. So we must have $z_i = 0$ for all i. But then $x_0 = 0$, which is again contrary to assumption.

Exercise 5.6

Take the trace of: