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This lecture gives a taste of the end product of the theory we will be building up in the rest of the course.
It is a graphical calculus, called the ZX calculus. We can manipulate these pictures as if it were a flow
chart. There are several special elements of these pictures that represent Z and X observables in quantum
computing - hence the name - and several special rules about how to combine and equate such pictures.

We will do this in three stages. First, the game itself: what kind of pictures are allowed in the first place?
Second, the rules: which moves are allowed to change one picture into another? Third, the interpretation:
what do the pictures mean, both intuitively, and in terms of matrices? Fourth, we give some examples of the
power of this game: what kind of things can we do using these pictures that were hard to do without?

The game

We will draw a kind of flow chart diagrams on the two-dimensional page. Time goes up, space extends left
and right. Wires represent qubits. The whole diagram represents a process, that takes a number of input
qubits, does something to them, and eventually returns a number of output qubits. For example, here is a
process that takes 3 qubits and returns 2:

In such diagrams, it doesn’t matter how exactly we draw the wires. All that matters is the connectivity
of which wires connect which processes. For example, the above process is the exact same process as the
following:

In fact, it doesn’t even matter how we orient the box itself, as long as it stays connected in the same way.
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We could also draw the process above as follows:

This invariance of the diagram under rotation is why we drew a wedge on the box; that way, we can remember
the connectivity of what goes on inside the box.

But what goes inside the box? Well, we can build up such boxes from certain simple ones by placing
them side by side, or on top of each other and connecting input and output wires. Here are the four simple
processes from which we build up all others:

α
α

α
α

Here α can be any phase, i.e. any real number between 0 and 2π. So really, there aren’t just four basic
processes, but infinitely many of them, but there are still just four types of basic processes. For the phase 0,
we will also draw a dot with no label in it.

For example, from these pieces we can build the following process with 2 input qubits and 2 output qubits:
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That’s all. Those are the pieces of the game.

The rules

There are two types of rules following which we may manipulate diagrams. First, the graphical rules that
we already talked about above. We may deform a diagram in any way we like, as long as the connectivity
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is respected. This is called a graph isotopy with a big word, and we will make this notion more precise in
the course. For now, imagine a big frame around the whole diagram, so that the input wires are fixed to the
lower edge of the frame, and the output wires are fixed to the upper edge of the frame. Similarly, the wires
are fixed to the dots in a way that their order around the circle cannot change. Two diagrams are considered
equal if there is a way to smoothly move the wires around, while keeping these endpoints fixed, turning the
one diagram into the other. if you like you can think of such a graphical rewrite as a movie that morphs one
diagram into another with the same connectivity. Try to imagine such a movie for the first three diagrams
at the start of this lecture.

The second type of rule pertains to the basic building blocks. These rules govern how you may combine
several building blocks. There are quite a few of them, and we will now simply list them.

Monoid rules

= = = =

= = = =

Frobenius rules

= =

Fusion rules

α β

= α+ β
α β

= α+ β

Identity rules For the following rules we first introduce a bit of shorthand notation:

α :=

α

α :=

α

H :=

π
2

π
2

π
2
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The identity rules now say:

= = =

Hadamard rule

H

H

=

Colour change rule

=

H

H H

Copy rule

=

π-Copy rule

α

π
=

α

π π

Bialgebra rule

=
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Scalars rule

α

β

=

This rule says that we will ignore global scalar factors. It is more of a convenience, and we could have
dropped this rule for the price of carefully inserting scalars into all the other rules.

The interpretation

What do all these rules mean? Taken together, the monoid rules, Frobenius rules, fusion rules, and identity
rules intuitively say that it doesn’t matter how dots of the same colour are connected, as long as the phases
inside the dots add up to the same number (modulo 2π). If you think of the wires as qubits, i.e. 2-by-2
matrices, you can read this as saying that the white dots tell you how to multiply matrices that are diagonal
in the standard (Z) basis that have complex numbers of the form eiα as eigenvalues. The same holds for
black dots, but then in the (X) basis given by the basis vectors |+⟩ = ( 1√

2
, 1√

2
) and |−⟩ = ( 1√

2
,− 1√

2
). The

colour change rule tells us how to convert from one basis to the other. The bialgebra rule says that these
two bases are at a maximal angle to one another, or complementary. The copy and π-copy rules are happy
coincidences that hold for these two complementary bases.

Indeed, there is a standard model. This interprets a diagram of the ZX-calculus as an actual matrix in a
way that respects the rules:

t |

=

(
1 0
0 1

)
t |

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


r z

=


1
0
0
1


r z

=
(
1 0 0 1

)
t

H

|

=

(
1 1
1 −1

)
t

α

|

=

(
1
eiα

)
t

α

|

=

(
1 0 0 0
0 0 0 eiα

)
t

α

|

=

(
1 + eiα

1− eiα

)
t

α

|

=

(
1 + eiα 1− eiα 1− eiα 1 + eiα

1− eiα 1 + eiα 1 + eiα 1− eiα

)
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t
f g

|

= JfK ⊗ JgK

t

f

g |

= JgK ◦ JfK

This makes the intuitive interpretation very precise. All the rules remain valid under this standard
interpretation. Try it out! In other words, this standard interpretation is sound : any graphical manipulations
done with ZX diagrams yield valid equalities between matrices under the standard interpretation.

Theorem 0.1 (ZX calculus is sound). Let D1, D2 be diagrams in the ZX calculus. If D1 equals D2 under
the axioms of the ZX calculus, then JD1K = JD2K.

In other words still: the rules of the game make sense.

The power

Finally, let us showcase without proof a few ways in which the ZX calculus captures the essence of quantum
computation and is very efficient at it.

First, any possible linear transformation from m qubits to n qubits can be approximated up to arbitrary
precision with ZX diagrams. In other words, the ZX calculus is approximately universal.

Theorem 0.2 (ZX calculus is approximately universal). For any 2m-by-2n matrix f , and any error margin
ε > 0, there exists a diagram D in the ZX calculus, that only includes phases that are integer multiples of π4 ,
such that ∥JDK − f∥ < ε.

Second, the ZX calculus is complete. That is, if two matrices are equal, and are both given by some ZX
calculus diagrams, is there always a graphical proof of this using only the axioms of the ZX calculus? This is
the case if we assume the following further two axioms (that are sound under the standard interpretation):

πφ ψ

φ θ ψ

−θ

=
π φψ

φ−θψ

θ
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for any phases φ,ψ, θ that are multiples of π4 . Let’s call the ZX calculus with these two extra rules the π
4 -ZX

calculus.

Theorem 0.3 (ZX calculus is complete). Let D1, D2 be diagrams in the π
4 -ZX calculus. If JD1K = JD2K,

then D1 = D2 under the axioms of the π
4 -ZX calculus.

Third, the ZX calculus is very amenable to automation. All a ZX calculation really is, is a bunch of finite
labelled graphs, and a sequence of one of finitely many rules. Computers can handle this very well, and in
fact search for such proofs for us themselves.

One of the best examples of this is quantum circuit optimisation. Given a quantum algorithm in the
form of a quantum circuit, it may be very inefficient, in the sense that it contains a lot of gates that are
costly to implement in practice. The standard expensive gate is the T gate. Now, thanks to the approximate
universality of the ZX calculus, you can convert any quantum circuit into a ZX diagram. Then you can
manipulate that ZX diagram to your heart’s content, fusing dots until it has become a lot simpler. Finally,
you can, with some luck, convert the simpler ZX diagram back into a quantum circuit, that now has fewer
of the expensive (e.g. T ) gates.

This strategy for quantum circuit optimisation is in fact used in practice. The currently best commercial
state-of-the-art quantum circuit optimiser is based on this theory: t|ket⟩ by Cambridge Quantum Computing.
Below are some examples of what ZX calculus can do, taken from a research paper [arXiv:1903.10477].

In the lab session you will do some of this yourself!
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Circuit number of qubits number of T gates best previous method ZX calculus
adder8 24 399 213 173
Adder8 23 266 56 56
Adder16 47 602 120 120
Adder32 95 1274 248 248
Adder64 191 2618 504 504
barenco-tof3 5 28 16 16
barenco-tof4 7 56 28 28
barenco-tof5 9 84 40 40
barenco-tof10 19 224 100 100
tof3 5 21 15 15
tof4 7 35 23 23
tof5 9 49 31 31
tof10 19 119 71 71
csla-mux3 15 70 58 62
csum-mux9 30 196 76 84
cycle173 35 4739 1944 1797
gf(24)-mult 12 112 56 68
gf(25)-mult 15 175 90 115
gf(26)-mult 18 252 132 150
gf(27)-mult 21 343 185 217
gf(28)-mult 24 448 216 264
ham15-low 17 161 97 97
ham15-med 17 574 230 212
ham15-high 20 2457 1019 1019
hwb6 7 105 75 75
hwb8 12 5887 3531 3517
mod-mult-55 9 49 28 35
mod-red-21 11 119 73 73
mod54 5 28 16 8
nth-prime6 9 567 400 279
nth-prime8 12 6671 4045 4047
qcla-adder10 36 589 162 162
qcla-com7 24 203 94 95
qcla-mod7 26 413 235 237
rc-adder6 14 77 47 47
vbe-adder3 10 70 24 24
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(a) Original circuit
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(b) The circuit expanded as a ZX diagram. The small boxes are
Hadamard gates. There are 21 T gates, i.e. dots with phases that
are not multiples of π/2.
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(c) Simplified ZX diagram. Dotted lines
are wires carrying a Hadamard gate.
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(d) 15 T gates remain after optimisation.

Figure 1: Quantum circuit optimisation using ZX calculus
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