# Randomized Algorithms <br> Lecture 14: 2-SAT Randomized Algorithm 

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2022/23) - Lecture 14 - slide 1

## Logical Formulae and the "satisfiability" question

## Definition

- Propositional logical variables $x_{1}, \ldots, x_{n}$ for varying $n$.
- A literal is any expression which is either $x_{i}$ or $\bar{x}_{i}$, for some $i \in[n]$.
- A clause is any disjunction of a number of literals (ex: $x_{i} \vee x_{j}$ ).
- We say a propositional formula $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ is in Conjunctive Normal Form (CNF) if it is of the form

$$
C_{1} \wedge C_{2} \ldots \wedge C_{h}
$$

where every $C_{j}$ is a clause.

- The formula $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ is in $k-C N F$ if it is in CNF and every clause contains exactly $k$ literals.

The SAT problem, $k$-SAT problem is the problem of examining a given CNF (or $k$-CNF) expression and deciding whether or not it has a satisfying assignment.

$$
\text { RA (2022/23) - Lecture } 14 \text { - slide } 2
$$

## Examples of SAT, $k$-SAT

Example of a SAT question:

$$
\left(x_{1} \vee x_{8} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee x_{7} \vee x_{4} \vee x_{2}\right) .
$$

- For the formula above, easy to see there is a satisfying assignment (any with $x_{1}=1, x_{4}=0, x_{2}=1$ would do).
- In general, the SAT problem is NP-complete (we believe there is no polynomial-time algorithm).

Example of a 2-SAT question:

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) .
$$

- There is a polynomial-time algorithm (either randomized, as we see today, or deterministic) to solve 2-SAT.
- The 3 -SAT problem, and $k$-SAT for all $k>3$, are all NP-complete.


## 2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM $\left(n ; C_{1} \wedge C_{2} \wedge \ldots \wedge C_{\ell}\right)$

1. Assign arbitrary values to each of the $x_{i}$ variables.
2. $t \leftarrow 0$
3. while ( $t<2 m n^{2}$ and some clause is unsatisfied) do
4. Choose an arbitrary $C_{h}$ from all unsatisfied clauses;
5. Choose one of the 2 literals in $C_{h}$ uniformly at random and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. return this assignment to the $x_{1}, \ldots x_{n}$ else
8. return FAILED.

RA (2022/23) - Lecture 14 - slide 4

## 2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with the initial assignment being $x_{i}=0$ for all $i \in[n]$.

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)
$$

- Then $\left(x_{1} \vee x_{2}\right)$ is the sole unsatisfied clause.
- Flipping the value of $x_{2}$ (say) from 0 to 1 , will ensure that $\left(x_{1} \vee x_{2}\right)$ now becomes satisfied.
- However, making this flip would also change the assignment for ( $x_{1} \vee \bar{x}_{2}$ ), making this clause now unsatisfied. This is a balanced consequence overall (number of satisfied clauses stays the same).
- However, there are examples where a flip might end up violating many clauses. So it's not so helpful for us to use "number of clauses satisfied" as our measure of progress.

RA (2022/23) - Lecture 14 - slide 5

## 2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment $S \in\{0,1\}^{n}$ that makes our 2SAT formula $\phi$ true (satisfies all the clauses).
Our "measure of progress" will be the number of indices $k$ such that $x_{k}=S_{k},\left(x_{1}, \ldots, x_{n}\right)$ being the current assignment.
We will analyse the expected number of steps before ( $x_{1}, \ldots, x_{n}$ ) becomes $S$.

- Note that if $\phi$ does not have any satisfying assignment, Algorithm 2SATRANDOM always returns FAILED (as it should).
- Let's first assume that the formula $\phi$ has some satisfying assignment.
- $\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)$ is the assignment at time step $t$.


## 2-SAT Randomized Algorithm - Analysis (II)

To analyse the behaviour of Algorithm 2SATRANDOM when given a 2CNF formula $\phi$ that is satisfiable, we need some definitions.

## Definition

- Let $S$ be some satisfying assignment for $\phi$.
- $\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)$ the logical variables after the $t$-th iteration.
- Let $X_{t}$ denote the number of variables of the assignment $\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)$ having the same value as in $S$.

We work with the $X_{t}$ variable mainly, and bound the time before it reaches the value $n$.

RA (2022/23) - Lecture 14 - slide 7

## 2-SAT Randomized Algorithm - Analysis (III)

Some observations:

- If $X_{t}$ ever hits the value 0 , and $\phi$ is not yet satisfied, we are guaranteed that at the next step, $X_{t+1}=1 . X_{t}=0$ means all bits are different (Hamming weight $=n$ ).
- Alternatively, suppose $X_{t}=j$ for some value $j \in\{1, \ldots, n-1\}$ and that $\phi$ is unsatisfied.

1. Then on any of the currently unsatisfied clauses, we know the current assignment $x^{t}$ must differ from $S$ on at least one of the two variables.
2. Hence with probability at least $1 / 2$, we will increase the value of $X_{t}$ by 1 : by choosing the one that is different.
3. Probability at most $1 / 2$ decrease the value of $X_{t}$ by 1 : chose the one that is equal.

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t+1}=j+1 \mid\left(\left(X_{t}=j\right) \& \phi \text { not-sat }\right)\right] \geq 1 / 2 ; \\
& \operatorname{Pr}\left[X_{t+1}=j-1 \mid\left(\left(X_{t}=j\right) \& \phi \text { not-sat }\right)\right] \leq 1 / 2 .
\end{aligned}
$$

RA (2022/23) - Lecture 14 - slide 8

## 2-SAT Randomized Algorithm - Analysis (IV)

We want to imagine the progress of 2SATRANDOM as a Markov chain on the states $0,1, \ldots, n$. Our concern is bounding the expected number of steps for $X_{t}$ to hit the state $n$ (from an arbitrary starting point).

- Markov chains should be memoryless, and this is problematic.
- The value for $\operatorname{Pr}\left[X_{t+1}=j+1 \mid\left(\left(X_{t}=j\right) \& \phi\right.\right.$ not-sat $\left.)\right]$ can be affected by earlier flips done by the algorithm.

RA (2022/23) - Lecture 14 - slide 9

## 2-SAT Randomized Algorithm - Analysis

We choose to "tweak" the probabilities and study the process on $\{0,1,2, \ldots, n\}$ defined by the variable $Y_{t}$ :


Consider the Markov chain $Y_{0}, Y_{1}, \ldots, Y_{t}, \ldots$ such that

$$
\begin{aligned}
Y_{0} & =X_{0} ; \\
\operatorname{Pr}\left[Y_{t+1}=1 \mid\left(\left(Y_{t}=0\right) \& \phi \text { not-sat }\right)\right] & =1 ; \\
\operatorname{Pr}\left[Y_{t+1}=j+1 \mid\left(\left(Y_{t}=j\right) \& \phi \text { not-sat }\right)\right] & =1 / 2 ; \\
\operatorname{Pr}\left[Y_{t+1}=j-1 \mid\left(\left(Y_{t}=j\right) \& \phi \text { not-sat }\right)\right] & =1 / 2 .
\end{aligned}
$$

Clearly the expected number of steps for $X_{t}$ to hit $n$ is $\leq$ that for $Y_{t}$.

## 2-SAT Randomized Algorithm - Analysis

For any $j=0, \ldots, n-1$, define $h_{j}$ to be the expected number of steps to hit $n$ starting from $j$.

- Clearly, the expected number of steps for 2SATRANDOM to find a satisfying assignment is at most $\max _{j} h_{j}$ (may well be better).
- We will bound $h_{j}$ for every $j=0,1, \ldots, n$.


## 2-SAT Randomized Algorithm - Analysis

We have $h_{n}=0$ and $h_{0}=h_{1}+1$ for the "end cases".

- We will use $Z_{j}$, for $0,1, \ldots, n-1$, to be the random variable for the "number of steps" to reach $n$ from $j\left(h_{j}\right.$ will be $\mathrm{E}\left[Z_{j}\right]$ ).
- For $j=1, \ldots, n-1$, recalling the steps of the "random walk", and using linearity of expectation:

$$
\begin{aligned}
\mathrm{E}\left[Z_{j}\right] & =\frac{1}{2}\left(\mathrm{E}\left[Z_{j-1}\right]+1\right)+\frac{1}{2}\left(\mathrm{E}\left[Z_{j+1}\right]+1\right) \\
h_{j} & =\frac{1}{2}\left(h_{j+1}+1+h_{j-1}+1\right)
\end{aligned}
$$

This gives us the following system of equations:

$$
\begin{equation*}
h_{j}=\frac{h_{j-1}+h_{j+1}}{2}+1 \quad \text { for } j=1, \ldots, n-1 \tag{1}
\end{equation*}
$$

Leads to: $h_{j}=h_{j+1}+2 j+1$.

## 2-SAT Randomized Algorithm - Analysis

We show by induction that for $j=0, \ldots, n-1$,

$$
h_{j}=h_{j+1}+2 j+1
$$

Proof.
Base case: If $j=0$ we have $h_{0}=h_{1}+1$ that was shown to be true. Inductive step: Suppose this was true for $j=k-1$ (we had $h_{k-1}=h_{k}+2(k-1)+1$, this is our (IH)). Now consider $j=k$. By the "middle case" of our system of equations,

$$
\begin{aligned}
h_{k} & =\frac{h_{k-1}+h_{k+1}}{2}+1 \\
& =\frac{h_{k}+2(k-1)+1}{2}+\frac{h_{k+1}}{2}+1 \quad \text { by our (IH) } \\
& =\frac{h_{k}}{2}+\frac{h_{k+1}}{2}+\frac{2 k+1}{2}
\end{aligned}
$$

Subtracting $\frac{h_{k}}{2}$ from each side, this is equivalent to

$$
h_{k}=h_{k+1}+2 k+1,
$$

as claimed.
RA (2022/23) - Lecture 14 - slide 13

## 2-SAT Randomized Algorithm - Analysis

## Lemma (Lemma 7.1)

Assume that the given 2CNF formula has a satisfying assignment, and that 2SATRANDOM is allowed to carry out as many iterations as it wants to find a satisfying assignment. Then the expected number of iterations of 3 . to find that assignment is at most $n^{2}$.

## Proof.

We showed that the expected number of iterations is at most $\max _{j=0, \ldots, n-1}\left\{h_{j}\right\}$. We now know the max is $h_{0}$.
Applying $h_{k}=h_{k+1}+2 k+1$ iteratively, we have

$$
\begin{aligned}
h_{0} & =\sum_{k=0}^{n-1}(2 k+1)+h_{n} \\
& =2 \sum_{k=0}^{n-1} k+n+0 \\
& =2 \frac{(n-1) n}{2}+n=n^{2} .
\end{aligned}
$$

RA (2022/23) - Lecture 14 - slide 14

## Probability of failure

## Theorem

Algorithm 2SATRANDOM is parametrized by $m$, and the algorithm will perform up to $2 m n^{2}$ iterations of the loop.
Then, when there is a satisfying assignment for $\phi$, the probability that 2SATRANDOM does not discover one, is at most $2^{-m}$.

## Proof.

1. We group the $2 m n^{2}$ iterations into $m$ "blocks" of $2 n^{2}$ each.
2. Markov inequality gives a failure of $1 / 2$ for $2 \mathrm{E}\left[Z_{0}\right]=2 n^{2}$ iterations.
3. Hence failure overall is at most $(1 / 2)^{m}=2^{-m}$.
