Randomness and Computation
Lecture 15: Monte Carlo Method and DNF

Raul Garcia-Patron

School of Informatics
University of Edinburgh
The Monte Carlo Method

- The Monte Carlo method refers to a collection of tools for estimating values through sampling and simulation. Monte Carlo techniques are used extensively in almost all areas of physical sciences and engineering.

- The key ideas:
 1. Make your quantity of interest the expectation value of a probability distribution.
 2. Sample from that specific probability distribution to estimate the expectation value.

- Monte Carlo techniques can be used to compute areas and integrals, as we will see shortly.
A typical CS scenario for the Monte Carlo Method arises when the value we want to estimate is the count of the number of combinatorial structures satisfying a given criterion.

1. We will usually rely on a close relationship between the problem of counting the number of combinatorial structures and sampling one of the structures uniformly at random.

A Markov chain can sometimes be employed to do the sampling, which will be leveraged to estimate our value of interest.

Ideally we want to design efficient (polynomial time) sampling algorithms.
Approximate \(\pi \)

![Diagram showing a square with a circle inside, labeled with coordinates: (-1,1), (1,1), (-1,-1), (1,-1), and center (0,0).]

Algorithm \textsc{EstimatePi}(m)

1. \textit{count} \leftarrow 0
2. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(m \)
3. \textbf{draw} \((X, Y)\) uniformly at random from the square \(\text{ie draw each of } X, Y \text{ uniformly at random from the continuous distribution on } [-1, 1]\)
4. \textbf{if} \(X^2 + Y^2 \leq 1 \) \textbf{then}
5. \hspace{1em} \textit{count} \leftarrow \textit{count} + 1
6. \textbf{return} \(\frac{4 \cdot \textit{count}}{m} \)
Approximate π - Proof via Chernoff bound

Can let Z_i be the indicator variable for the "i-th" (X, Y) lying inside the circle. Then for $Z = \sum_{i=1}^{m} Z_i$,

$$E[Z] = \sum_{i=1}^{m} E[Z_i] = m \frac{\pi \cdot 1^2}{2^2} = \frac{\pi m}{4}.$$

Define new variable $Z' = \frac{4Z}{m}$, which satisfies $E[Z'] = \frac{4}{m}E[Z] = \pi$.
Approximate π - Proof via Chernoff bound

- Remember: $Z' = \frac{4Z}{m}$, which satisfies $E[Z'] = \frac{4mE[Z]}{m} = \pi$.

- Better estimate the higher m is.

- By Chernoff (4.6) if we have m samples, then for arbitrary $\epsilon \in (0, 1)$,

$$
\Pr[|Z' - E[Z']| \geq \epsilon \pi] = \Pr\left[\left|Z - \frac{\pi m}{4}\right| \geq \frac{\epsilon \pi m}{4}\right] \\
= \Pr[|Z - E[Z]| \geq \epsilon E[Z]] \\
\leq 2e^{-\epsilon^2 \pi m / 12}.
$$

- We can achieve: $2e^{-\epsilon^2 \pi m / 12} \leq \delta$, if $m \geq \frac{12 \ln(\frac{2}{\delta})}{\pi \epsilon^2}$.
 - Where ϵ is a relative error.
 - Where δ is the probability of failure of estimate.
Definition of \((\epsilon, \delta)\)-approximation

Definition (Definition 11.1)

A randomized algorithm for estimating a (positive) quantity \(V \) (usually depending on certain input parameters) is said to give an \((\epsilon, \delta)\) approximation if its output \(X \) satisfies

\[
\Pr[|X - V| \geq \epsilon V] \leq \delta.
\]

- The algorithm \textsc{EstimatePi} gives an \((\epsilon, 2e^{-e^2\pi m/12})\) approximation.
Monte Carlo Method

Definition (Generalization (Theorem 11.1))
Let X_1, \ldots, X_m be independent and identically distributed indicator random variables (i.e., Bernoulli with a fixed parameter), and

$$\mu = \sum_{i=1}^{m} \mathbb{E}[X_i].$$

Then if

$$m \geq \frac{3 \ln \left(\frac{2}{\delta} \right)}{\epsilon^2 \mu},$$

we have

$$\text{Pr} \left(\left| \frac{1}{m} \sum_{i=1}^{m} X_i - \mu \right| \geq \epsilon \mu \right) \leq \delta.$$

So for this m, sampling gives a (ϵ, δ)-approximation of μ.

Definition (FPRAS (Definition 11.2))
A fully polynomial randomized approximation scheme (FPRAS):

- Given input x, we want (ϵ, δ)-approximation of $V(x)$.
- Achieved in time polynomial in $1/\epsilon$, in $\ln(1/\delta)$ and size of x.

RC (2018/19) – Lecture 16 – slide 8
The DNF counting problem

Disjunctive Normal Form (DNF):

▶ each clause is now a conjunction (\(\land\), AND) literals
▶ we have disjunctions (\(\lor\), OR) of clauses

For example:

\[(x_1 \land \overline{x}_2 \land x_3) \lor (x_2 \land x_4) \lor (\overline{x}_1 \land x_3 \land x_4).\]

We are interested in counting the number of satisfying assignments.

▶ It is easy to find satisfying assignments or prove not satisfiable.
▶ It is NP-hard to compute the exact number of satisfying assignments for a DNF:
 ▶ we can easily construct a DNF for the negation of the SAT formula \(\phi\)
 ▶ The DNF has \(2^n\) satisfying assignments \(\iff\) \(\phi\) was unsatisfiable
▶ Counting DNF assignments is \(\#P\)-complete.
▶ However, we can approximately count them.
The DNF counting problem - Naïve Approach

- let $c(F)$ denote number of satisfying assignments of a given DNF formula F over n variables.

- $c(F)$ will be 0 only if it is the case that every clause contains x_i and \bar{x}_i for some i. Easy to notice and eliminate before we start.

- Naïve approach to counting DNF assignments is to sample m uniform random assignments to x_1, \ldots, x_n (from the set $\{0, 1\}^n$) and check whether F is satisfied for each sample.

 - The random variable X_i will be 1 if the i-th trial satisfies F, 0 otherwise.

 - Then we estimate the fraction of these to satisfy F and we return estimate

 $$
 \hat{c}(F) = 2^n \frac{\sum_{i=1}^{m} X_i}{m},
 $$

 as the estimate of satisfying assignments $c(F)$.
In order for $\hat{c}(F)$ to be an (ϵ, δ)-approximation for $c(F)$, we require:

$$\left| 2^n \frac{\sum_{i=1}^{m} X_i}{m} - c(F) \right| \leq \epsilon \cdot c(F) \iff \left| \sum_{i=1}^{m} X_i - \frac{mc(F)}{2^n} \right| \leq \epsilon \cdot \frac{mc(F)}{2^n}$$ \hspace{1cm} (2)

by Chernoff this holds \iff we have $m \geq \frac{3 \cdot 2^n \ln(\frac{2}{\delta})}{\epsilon^2 c(F)}$.

If $c(F)$ is much much smaller than 2^n, then we need a huge number of samples, as a random assignment is very unlikely to hit the good assignments.
FPRAS for DNF counting

Our formula is

$$F = C_1 \lor C_2 \lor \ldots \lor C_t,$$

where every C_i is a conjunction of literals.

- If C_i contains the literals x_j, \bar{x}_j for the same $j \in [n]$ (opposing literals), there is no assignment which can satisfy clause C_i.

- If C_i does not contain any opposing pair of literals, then C_i is satisfied by any assignment $a \in \{0, 1\}^n$ which sets

 $$a_j = \begin{cases}
 1 & C_i \text{ contains the positive literal } x_j \\
 0 & C_i \text{ contains the negative literal } \bar{x}_j \\
 0/1 & \text{neither } x_j \text{ nor } \bar{x}_j \text{ appear in } C_i
 \end{cases}$$

- Assuming C_i has ℓ_i literals and no opposing pair, then there are exactly $2^{n-\ell_i}$ satisfying assignments for C_i.

RC (2018/19) – Lecture 16 – slide 12
For every clause C_i, we define SC_i to be the set of 2^{n-l_i} assignments $a \in \{0, 1\}^n$ which satisfy C_i: $U = \{ (i, a) \mid 1 \leq i \leq t \text{ and } a \in SC_i \}$.

- The SC_i sets are not disjoint, as a satisfying assignment for one clause may also satisfy a different clause/clauses.
To estimate $c(F)$ we need to define a subset S of U of size $c(F)$. For each assignment a there must be a single pair (i, a).

We do so by choosing the lowest j that is satisfied by assignment a.

$$S = \{ (i, a) \mid 1 \leq i \leq t, a \in SC_i, a \notin SC_j, j < i \}$$
We know how to compute \(|U| = \sum_{i=1}^{t} s^{n-|C_i|}\).

S is approx. of same size as \(U\): \(\frac{|S|}{|U|} \geq \frac{1}{t}\). Key to make the sampling algorithm efficient.
Algorithm for sampling DNF assignments

Algorithm \textsc{ApproxDNF}(n; m; C_1 \lor \ldots \lor C_t)

1. \hspace{1em} \text{\textit{count}} \leftarrow 0
2. \hspace{1em} \text{\textit{cardU}} \leftarrow 0
3. \hspace{1em} \textbf{for} \hspace{1em} i \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} t
4. \hspace{1em} \hspace{1em} \text{\textit{cardU}} \leftarrow \text{\textit{cardU}} + 2^{n - |C_i|}
5. \hspace{1em} \textbf{for} \hspace{1em} k \leftarrow 1 \hspace{1em} \textbf{to} \hspace{1em} m
6. \hspace{1em} \hspace{1em} \text{Choose } i \text{ with probability } \frac{2^{n - |C_i|}}{\text{\textit{cardU}}}.
7. \hspace{1em} \hspace{1em} \text{Sample } a \in SC_i \text{ by setting the literals of } C_i \text{ to the required values, then randomly generating the other } n - |C_i| \text{ bits.}
8. \hspace{1em} \hspace{1em} \textbf{if} \ (a \text{ does not satisfy } C_{i'}, \text{ for any } i' < i) \textbf{ then}
9. \hspace{1em} \hspace{1em} \hspace{1em} \text{\textit{count}} \leftarrow \text{\textit{count}} + 1
10. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{return} \ \frac{\text{\textit{count}}}{m} \cdot (\text{\textit{cardU}}).
Sampling from U

$U = \{(i, a) \mid 1 \leq i \leq t \& a \in SC_i\}$

$Pr((i, a) \text{ is chosen}) = Pr(i \text{ is chosen}) \cdot Pr(a \text{ is chosen} \mid i \text{ is chosen})$:

$$= \frac{|SC_i|}{|U|} \cdot \frac{1}{|SC_i|} = \frac{1}{|U|}$$

Remember:

- Choose i with probability $\frac{2^{|C_i|}}{\text{card}U}$.

- Sample $a \in SC_i$ by setting the literals of C_i to the required values, then randomly generating the other $n - |C_i|$ bits.
FPRAS for DNF counting

Theorem (Theorem 11.2)

Our DNF counting algorithm gives a fully-polynomial randomized approximation scheme for the DNF counting problem if we set

\[m = \lceil \frac{3t}{\epsilon^2 \ln(\frac{2}{\delta})} \rceil. \]

Proof.

▷ Using Theorem 11.1, if \(m \geq \frac{3 \ln(\frac{2}{\delta})}{\epsilon^2 \mu} \), we have

\[
\Pr \left(\left| \frac{1}{m} \sum_{i=1}^{m} X_i - \mu \right| \geq \epsilon \mu \right) \leq \delta
\]

we get a \((\epsilon, \delta)\)-approximation of \(\mu\).

▷ \(X_i\) indicator that sample \(i\) belongs to subgroup \(S\):

\[
E[X_i] = \frac{c(F)}{|U|} \geq \frac{1}{t}.
\]