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Graphs and Ramsey’s Theorem

Theorem
[Ramsey,1928] (a special case, for graphs) For any positive integer, k,
there is a positive integer, n, such that in any undirected graph with at
least n vertices:
I either there are k vertices that form a k-clique.
I or, there are k vertices that form a k-independent-set.

For each integer k ≥ 1, let R(k) be the smallest such integer n ≥ 1
such that every undirected graph with n or more vertices has either
a k-clique or a k-independent-set as an induced subgraph.

The numbers R(k) are called diagonal Ramsey numbers.
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Proof of Ramsey’s Theorem: Consider any integer k ≥ 1, and any
graph, G1 = (V1, E1) with at least n = 22k vertices.

Initialize: SClique := {}; SIndSet := {};
for i := 1 to 2k − 1 do

Pick any vertex vi ∈ Vi ;
if (vi has at least 22k−i neighbors in Gi) then

SClique := SClique ∪ {vi}; Vi+1 := {neighbors of vi};

else (* in case vi has at least 22k−i non-neighbors in Gi *)
SIndSet := SIndSet ∪ {vi}; Vi+1 := {non-neighbors of vi};

end if
Let Gi+1 = (Vi+1, Ei+1) be the subgraph of Gi induced by Vi+1;

end for

At the end, all vertices in SClique form a clique, and all vertices in SIndSet
form an independent set. Since |SClique ∪ SIndSet | = 2k − 1, either
|SClique| ≥ k or |SIndSet | ≥ k. Q.E.D.
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Remarks on the proof, and on Ramsey numbers

I The proof establishes that R(k) ≤ 22k = 4k .

I �estion: Can we give a be�er upper bound on R(k)?

I �estion: Can we give a good lower bound on R(k)?
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Paul Erdös (1913-1996)

Immensely prolific mathematician,
eccentric nomad,

father of the probabilistic method in combinatorics.

RA – Lecture 10 – slide 5



Lower bounds on Ramsey numbers:
the birth of the Probabilistic Method

Theorem (Erdös,1947)
For all k ≥ 3,

R(k) > 2k/2

The proof uses the probabilistic method.

Recall the general idea of the probabilistic method: to show the
existence of a hard-to-find object with a desired property, Q, try to
construct a probability distribution over a sample spaceΩ of
objects, and show that with positive probability a randomly chosen
object inΩ has the property Q.
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Random Graphs

Definition
The Gn,p random graph model

A random graph G = (V , E) sampled from Gn,p is obtained as follows:

I G has n = |V | nodes.

I For each of the
(n
2

)
possible pairs, {u, v}, with u, v ∈ V and u 6= v , to

determine whether or not {u, v} ∈ E , we flip an (independent) coin,
which lands heads with probability p (and tails with probability (1 −
p)). If it lands heads then {u, v} ∈ E ; otherwise {u, v} 6∈ E .
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Proof that R(k) > 2k/2 using the probabilistic method:

Consider a random graph G = (V , E) sampled from Gn, 12
.

(We will later determine that le�ing n ≤ 2k/2 su�ices.)

Let V = {v1, . . . , vn}. Note that for vi 6= vj , Pr({vi, vj} ∈ E) = 1
2 .

There are
(n
k

)
subsets of V of size k.

Let S1, S2, . . . , S(nk)
be an enumeration of these subsets of V .

For i = 1, 2, . . . ,
(n
k

)
, let Ei be the event that Si forms either a k-clique

or a k-independent-set in the graph. Note that:

Pr(Ei) = 2 · 2−(
k
2) = 2−(

k
2)+1
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Proof of R(k) > 2k/2 (continued):
Note that E =

⋃(nk)
i=1 Ei is the event that there exists either a k-clique

or a k-independent-set in the graph. But:

Pr(E) = Pr(
(nk)⋃
i=1

Ei) ≤
(nk)∑
i=1

Pr(Ei) =
(
n
k

)
· 2−(

k
2)+1

�estion: How small must n be so that
(n
k

)
· 2−(

k
2)+1 < 1?

For k ≥ 2:
(
n
k

)
=

n(n− 1) . . . (n− k + 1)
k(k − 1) . . . 1

<
nk

2k−1

Thus, if n ≤ 2k/2, then(
n
k

)
· 2−(

k
2)+1 <

(2k/2)k

2k−1 · 2
−(k2)+1 =

2k
2/2

2k−1 · 2
−k(k−1)/2+1

= 2
k2

2 −k+1 · 2−
k2

2 + k
2+1 = 2−

k
2+2
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Completion of the proof that R(k) > 2k/2:

For all k ≥ 4, 2−
k
2+2 ≤ 1.

So, for k ≥ 4, Pr(E) < 1, and thus P(E) = 1− P(E) > 0.

But note that P(E) is the probability that in a random graph of size
n ≤ 2k/2, there is no k-clique and no k-independent-set.

Thus, since Pr(E) > 0, such a graph must exist for any n ≤ 2k/2.

Hence, R(k) > 2k/2, for k ≥ 4.

It is easy to argue “by hand” that R(3) = 6, and clearly 6 > 23/2 =
2.828 . . ..

Hence, for all k ≥ 3, R(k) > 2k/2.
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A randomized algorithm?

I The proof directly yields a randomize Monte Carlo algorithm
for generating a random graph G ∼ Gn,1/2 of size n << 2k/2

which, with high probability, will have no k-clique and no k-
independent set.

I However, checking whether a graph, G has a k-clique (or k-
independent set), given both G and k as input, isNP-complete.
So, we can’t check it e�iciently for large k.

I Hence, we have no way to convert this Monte Carlo algorithm
to an e�icient randomized Las Vegas algorithm that always pro-
duces a graph with no k-clique and no k-independent set.
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Remarks on Ramsey numbers
I We have shown 2k/2 = (

√
2)k < R(k) ≤ 4k = 22k .

I Despite decades of research by many combinatorists, nothing
significantly be�er was known until very recently! In particular:

no constant c >
√
2 is known such that ck ≤ R(k), and

no constant c ′ < 4 was known such that R(k) ≤ (c ′)k .

Major breakthrough (‼) announced this year:
[Campos,Gri�iths,Morris, Sahasrabudhe,2023]: There is a fixed
constant ε > 0 (specifically, ε = 2−7), such that for all su�iciently
large k: R(k) ≤ (4− ε)k .

I For specific small k, more is known:

R(1) = 1 ; R(2) = 2 ; R(3) = 6 ; R(4) = 18

43 ≤ R(5) ≤ 48

102 ≤ R(6) ≤ 165

. . .
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Why can’t we just compute R(k) exactly, for small k?

For each k, we know that 2k/2 < R(k) < 22k ,

So, for small fixed k, we could try to check, exhaustively, for each
r such that 2k/2 < r < 22k , whether there exists a graph G with r
vertices such that G has no k-clique and no k-independent set.

�estion: How many graphs on r vertices are there?

There are 2(
r
2) = 2r(r−1)/2 (labeled) graphs on r vertices.

So, for r = 2k , we would have to check 22
k(2k−1)/2 graphs‼

So for k = 5, just for r = 25, we have to check 2496 graphs ‼
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�ote a�ributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us,
landed on Earth demanding to know the value of R(5),
or else they would destroy our planet.

In that case, I believe we should marshal all our comput-
ers, and all our mathematicians, in an a�empt to find
the value.

But suppose instead they asked us for R(6).

In that case, I believe we should a�empt to destroy the
aliens.
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Maximum Satisfiability (MAXSAT)

A propositional boolean formula in Conjunctive Normal Form (CNF),
is a conjunction of disjunctive clauses, where each disjunctive clause
is a “Or” of literals: {x1, . . . , xn} ∪ {¬x1, . . . , xn}.
An example of a CNF formula looks something like this:

(x1 ∨ ¬x2 ∨ ¬x3)∧ (¬x1 ∨ ¬x2)∧ (x1 ∨ x2 ∨ x3 ∨ x4)∧ . . .

The MAX-k-SAT problem: Given a CNF formula, ϕ, with n vari-
ables and m clauses, where each clause has at most k literals, what
is the maximum number clauses that can be simultaneously satisfied
by a true/false assigment to all the variables?

Theorem: MAX-k-SAT is NP-hard, for all k ≥ 2. In fact, it is NP-
hard even to approximate the maximum number of clauses within
some constant factor (the constant depending on k when there are
exactly k literals in each clause).
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Theorem
Given a CNF boolean formula with m clauses, where each clause con-
tains at least k literals, there exists a truth assigment to the variables
that satisfies at least m · (1− 1

2k ) clauses.

(In particular, note that this means that for a 3-CNF formula where
every clause contains exactly 3 literals, there exists an assignment
that satisfies a 7/8 fraction of the clauses.)

Proof: Randomly assign true or false, with probability 1/2 each, in-
dependently, to each of the n variables.

The probability that the i’th clause, with ki literals, is satisfied is
(1− 1

2ki
). Hence, the expected total number of clauses that are satis-

fied (using linearity of expectation) is:

m∑
i=1

(1− 2−ki) ≥ m(1− 2k). 2
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I This proof can be converted to a randomized Las Vegas algo-
rithm (with expected polynomial running time) for computing
such a truth assignment that satisfies 7/8 fraction of the clauses,
when every clause has exactly 3 literals (MAX-E-3SAT).

I Furthermore, the algorithm can be derandomized, using themethod
of conditional expectations.

Astonishingly:

Theorem
[Hastad,2001] If for any ε > 0 there exists a polynomial-time ( 78 + ε)-
approximation algorithm for MAX-E-3SAT, then P = NP.
The proof (beyond the scope of this course) involves much of the deep
theoretical developments behind the PCP (“Probabilitically Check-
able Proof”) characterization of NP.
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References

I Chapter 6, sections 6.1-6.3 of [MU].
I We will continue with Chapter 6 and the probabilistic method

next time.
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