Randomized Algorithms

Lecture 10: the probabilistic method, ramsey numbers, and random graphs

Kousha Etessami

RA - Lecture 10 - slide 1

Graphs and Ramsey's Theorem

Theorem

[Ramsey,1928] (a special case, for graphs) For any positive integer, k, there is a positive integer, n, such that in any undirected graph with at least n vertices:

- either there are k vertices that form a k-clique.
- or, there are k vertices that form a k-independent-set.

For each integer $k \geq 1$, let $R(k)$ be the smallest such integer $n \geq 1$ such that every undirected graph with n or more vertices has either a k-clique or a k-independent-set as an induced subgraph.

The numbers $R(k)$ are called diagonal Ramsey numbers.

Proof of Ramsey's Theorem: Consider any integer $k \geq 1$, and any graph, $G_{1}=\left(V_{1}, E_{1}\right)$ with at least $n=2^{2 k}$ vertices.

Initialize: $S_{\text {Clique }}:=\{ \} ; S_{\text {IndSet }}:=\{ \} ;$
for $i:=1$ to $2 k-1$ do
Pick any vertex $v_{i} \in V_{i}$;
if (v_{i} has at least $2^{2 k-i}$ neighbors in G_{i}) then $S_{\text {Clique }}:=S_{\text {Clique }} \cup\left\{v_{i}\right\} ; V_{i+1}:=\left\{\right.$ neighbors of $\left.v_{i}\right\} ;$
else (* in case v_{i} has at least $2^{2 k-i}$ non-neighbors in $G_{i}{ }^{*}$) $S_{\text {IndSet }}:=S_{\text {IndSet }} \cup\left\{v_{i}\right\} ; V_{i+1}:=\left\{\right.$ non-neighbors of $\left.v_{i}\right\} ;$
end if
Let $G_{i+1}=\left(V_{i+1}, E_{i+1}\right)$ be the subgraph of G_{i} induced by V_{i+1}; end for

At the end, all vertices in $S_{\text {Clique }}$ form a clique, and all vertices in $S_{\text {IndSet }}$ form an independent set. Since $\left|S_{\text {Clique }} \cup S_{\text {IndSet }}\right|=2 k-1$, either $\left|S_{\text {Clique }}\right| \geq k$ or $\left|S_{\text {IndSet }}\right| \geq k$. Q.E.D.

Remarks on the proof, and on Ramsey numbers

- The proof establishes that $R(k) \leq 2^{2 k}=4^{k}$.
- Question: Can we give a better upper bound on $R(k)$?
- Question: Can we give a good lower bound on $R(k)$?

Paul Erdös (1913-1996)
Immensely prolific mathematician, eccentric nomad,
father of the probabilistic method in combinatorics.

RA - Lecture 10 - slide 5

Lower bounds on Ramsey numbers: the birth of the Probabilistic Method

Theorem (Erdös, 1947)
For all $k \geq 3$,

$$
R(k)>2^{k / 2}
$$

The proof uses the probabilistic method.

Lower bounds on Ramsey numbers: the birth of the Probabilistic Method

Theorem (Erdös, 1947)
For all $k \geq 3$,

$$
R(k)>2^{k / 2}
$$

The proof uses the probabilistic method.

Recall the general idea of the probabilistic method: to show the existence of a hard-to-find object with a desired property, Q, try to construct a probability distribution over a sample space Ω of objects, and show that with positive probability a randomly chosen object in Ω has the property Q.

Random Graphs

Definition

The $G_{n, p}$ random graph model
A random graph $G=(V, E)$ sampled from $G_{n, p}$ is obtained as follows:

- G has $n=|V|$ nodes.
- For each of the $\binom{n}{2}$ possible pairs, $\{u, v\}$, with $u, v \in V$ and $u \neq v$, to determine whether or not $\{u, v\} \in E$, we flip an (independent) coin, which lands heads with probability p (and tails with probability ($1-$ $p)$). If it lands heads then $\{u, v\} \in E$; otherwise $\{u, v\} \notin E$.

Proof that $R(k)>2^{k / 2}$ using the probabilistic method:

Consider a random graph $G=(V, E)$ sampled from $G_{n, \frac{1}{2}}$.
(We will later determine that letting $n \leq 2^{k / 2}$ suffices.)
Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Note that for $v_{i} \neq v_{j}, \operatorname{Pr}\left(\left\{v_{i}, v_{j}\right\} \in E\right)=\frac{1}{2}$.
There are $\binom{n}{k}$ subsets of V of size k.
Let $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$ be an enumeration of these subsets of V.
For $i=1,2, \ldots,\binom{n}{k}$, let E_{i} be the event that S_{i} forms either a k-clique or a k-independent-set in the graph. Note that:

$$
\operatorname{Pr}\left(E_{i}\right)=2 \cdot 2^{-\binom{k}{2}}=2^{-\binom{k}{2}+1}
$$

Proof of $R(k)>2^{k / 2}$ (continued):

Note that $E=\bigcup_{i=1}^{\binom{n}{k}} E_{i}$ is the event that there exists either a k-clique or a k-independent-set in the graph. But:

$$
\operatorname{Pr}(E)=\operatorname{Pr}\left(\bigcup_{i=1}^{\substack{n \\ k}} \text {, } E_{i}\right) \leq \sum_{i=1}^{\binom{n}{k}} \operatorname{Pr}\left(E_{i}\right)=\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}
$$

Question: How small must n be so that $\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}<1$?
For $k \geq 2: \quad\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k(k-1) \ldots 1}<\frac{n^{k}}{2^{k-1}}$
Thus, if $n \leq 2^{k / 2}$, then

$$
\begin{aligned}
\binom{n}{k} \cdot 2^{-\binom{k}{2}+1}<\frac{\left(2^{k / 2}\right)^{k}}{2^{k-1}} \cdot 2^{-\binom{k}{2}+1} & =\frac{2^{k^{2} / 2}}{2^{k-1}} \cdot 2^{-k(k-1) / 2+1} \\
& =2^{\frac{k^{2}}{2}-k+1} \cdot 2^{-\frac{k^{2}}{2}+\frac{k}{2}+1}=2^{-\frac{k}{2}+2}
\end{aligned}
$$

Completion of the proof that $R(k)>2^{k / 2}$:

For all $k \geq 4,2^{-\frac{k}{2}+2} \leq 1$.
So, for $k \geq 4, \operatorname{Pr}(E)<1$, and thus $P(\bar{E})=1-P(E)>0$.
But note that $P(\bar{E})$ is the probability that in a random graph of size $n \leq 2^{k / 2}$, there is no k-clique and no k-independent-set.

Thus, since $\operatorname{Pr}(\bar{E})>0$, such a graph must exist for any $n \leq 2^{k / 2}$.
Hence, $R(k)>2^{k / 2}$, for $k \geq 4$.
It is easy to argue "by hand" that $R(3)=6$, and clearly $6>2^{3 / 2}=$ 2.828....

Hence, for all $k \geq 3, \quad R(k)>2^{k / 2}$.

A randomized algorithm?

- The proof directly yields a randomize Monte Carlo algorithm for generating a random graph $G \sim G_{n, 1 / 2}$ of size $n \ll 2^{k / 2}$ which, with high probability, will have no k-clique and no k independent set.
- However, checking whether a graph, G has a k-clique (or k independent set), given both G and k as input, is NP-complete. So, we can't check it efficiently for large k.
- Hence, we have no way to convert this Monte Carlo algorithm to an efficient randomized Las Vegas algorithm that always produces a graph with no k-clique and no k-independent set.

Remarks on Ramsey numbers

- We have shown $\quad 2^{k / 2}=(\sqrt{2})^{k}<R(k) \leq 4^{k}=2^{2 k}$.

Remarks on Ramsey numbers

- We have shown $\quad 2^{k / 2}=(\sqrt{2})^{k}<R(k) \leq 4^{k}=2^{2 k}$.
- Despite decades of research by many combinatorists, nothing significantly better was known until very recently! In particular: no constant $c>\sqrt{2}$ is known such that $c^{k} \leq R(k)$, and no constant $c^{\prime}<4$ was known such that $R(k) \leq\left(c^{\prime}\right)^{k}$.

Major breakthrough (!!) announced this year:
[Campos,Griffiths,Morris, Sahasrabudhe,2023]: There is a fixed constant $\epsilon>0$ (specifically, $\epsilon=2^{-7}$), such that for all sufficiently large k :

$$
R(k) \leq(4-\epsilon)^{k}
$$

- For specific small k, more is known:

$$
\begin{gathered}
R(1)=1 \quad ; \quad R(2)=2 ; R(3)=6 \quad ; \quad R(4)=18 \\
43 \leq R(5) \leq 48 \\
102 \leq R(6) \leq 165
\end{gathered}
$$

RA - Lecture 10 - slide 12

Why can't we just compute $R(k)$ exactly, for small k ?

For each k, we know that $2^{k / 2}<R(k)<2^{2 k}$,
So, for small fixed k, we could try to check, exhaustively, for each r such that $2^{k / 2}<r<2^{2 k}$, whether there exists a graph G with r vertices such that G has no k-clique and no k-independent set.

Question: How many graphs on r vertices are there?
There are $2^{\binom{r}{2}}=2^{r(r-1) / 2}$ (labeled) graphs on r vertices.
So, for $r=2^{k}$, we would have to check $2^{2^{k}\left(2^{k}-1\right) / 2}$ graphs!!
So for $k=5$, just for $r=2^{5}$, we have to check 2^{496} graphs !!

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$.

Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful than us, landed on Earth demanding to know the value of $R(5)$, or else they would destroy our planet.

In that case, I believe we should marshal all our computers, and all our mathematicians, in an attempt to find the value.

But suppose instead they asked us for $R(6)$.
In that case, I believe we should attempt to destroy the aliens.

Maximum Satisfiability (MAXSAT)

A propositional boolean formula in Conjunctive Normal Form (CNF), is a conjunction of disjunctive clauses, where each disjunctive clause is a "Or" of literals: $\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{\neg x_{1}, \ldots, x_{n}\right\}$.
An example of a CNF formula looks something like this:

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \wedge \ldots
$$

The MAX- k-SAT problem: Given a CNF formula, φ, with n variables and m clauses, where each clause has at most k literals, what is the maximum number clauses that can be simultaneously satisfied by a true/false assigment to all the variables?

Theorem: MAX- k-SAT is NP-hard, for all $k \geq 2$. In fact, it is NPhard even to approximate the maximum number of clauses within some constant factor (the constant depending on k when there are exactly k literals in each clause).

Theorem

Given a CNF boolean formula with m clauses, where each clause contains at least k literals, there exists a truth assigment to the variables that satisfies at least $m \cdot\left(1-\frac{1}{2^{k}}\right)$ clauses.
(In particular, note that this means that for a 3-CNF formula where every clause contains exactly 3 literals, there exists an assignment that satisfies a $7 / 8$ fraction of the clauses.)

Proof: Randomly assign true or false, with probability $1 / 2$ each, independently, to each of the n variables.

The probability that the i 'th clause, with k_{i} literals, is satisfied is $\left(1-\frac{1}{2^{k_{i}}}\right)$. Hence, the expected total number of clauses that are satisfied (using linearity of expectation) is:

$$
\sum_{i=1}^{m}\left(1-2^{-k_{i}}\right) \geq m\left(1-2^{k}\right)
$$

RA - Lecture 10 - slide 16

- This proof can be converted to a randomized Las Vegas algorithm (with expected polynomial running time) for computing such a truth assignment that satisfies $7 / 8$ fraction of the clauses, when every clause has exactly 3 literals (MAX-E-3SAT).
- Furthermore, the algorithm can be derandomized, using the method of conditional expectations.

Astonishingly:

Theorem

[Hastad,2001] If for any $\epsilon>0$ there exists a polynomial-time $\left(\frac{7}{8}+\epsilon\right)$ approximation algorithm for MAX-E-3SAT, then $\mathbf{P}=\mathbf{N P}$.
The proof (beyond the scope of this course) involves much of the deep theoretical developments behind the PCP ("Probabilitically Checkable Proof") characterization of NP.
$R A$ - Lecture 10 - slide 17

References

- Chapter 6, sections 6.1-6.3 of [MU].
- We will continue with Chapter 6 and the probabilistic method next time.

RA - Lecture 10 - slide 18

