Randomized Algorithms

Lecture 10: the probabilistic method, ramsey numbers, and
random graphs
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Graphs and Ramsey’s Theorem

Theorem
[Ramsey,1928] (a special case, for graphs) For any positive integer, k,
there is a positive integer, n, such that in any undirected graph with at
least n vertices:

» either there are k vertices that form a k-clique.

» or, there are k vertices that form a k-independent-set.

For each integer k > 1, let R(k) be the smallest such integer n > 1
such that every undirected graph with n or more vertices has either
a k-clique or a k-independent-set as an induced subgraph.

The numbers R(k) are called diagonal Ramsey numbers.
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Proof of Ramsey’s Theorem: Consider any integer k > 1, and any
graph, G; = (V4, E1) with at least n = 22k vertices.

Initialize: SClique =1} Sindset = {}
fori:=1to2k—1do
Pick any vertex v; € V;
if (v; has at least 2%~ neighbors in G;) then
SClique = SClique U{vi; Vigr = {neighbors of vj};
else (*in case v; has at least 22~/ non-neighbors in G; *)
Sindset *= Sindset U{vi}; Vit1 :={non-neighbors of v;};
end if
Let Giy1 = (Vii1, Eir1) be the subgraph of G; induced by Vi 1;
end for

At the end, all vertices in Scjique form a clique, and all vertices in S,
form an independent set. Since [Scjigue U Sinasetl = 2k — 1, either
|5Clique| > kor |SlndSet| > k. Q.E.D. O
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Remarks on the proof, and on Ramsey numbers

» The proof establishes that R(k) < 22K = 4k,
» Question: Can we give a better upper bound on R(k)?

» Question: Can we give a good lower bound on R(k)?
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Paul Erdés (1913-1996)

Immensely prolific mathematician,
eccentric nomad,
father of the probabilistic method in combinatorics.
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Lower bounds on Ramsey numbers:
the birth of the Probabilistic Method

Theorem (Erd6s,1947)

Forall k > 3,
R(k) > 2X/?

The proof uses the probabilistic method.
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Lower bounds on Ramsey numbers:
the birth of the Probabilistic Method

Theorem (Erd6s,1947)

Forall k > 3,
R(k) > 2X/?

The proof uses the probabilistic method.

Recall the general idea of the probabilistic method: to show the
existence of a hard-to-find object with a desired property, Q, try to
construct a probability distribution over a sample space Q of
objects, and show that with positive probability a randomly chosen
object in Q has the property Q.
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Random Graphs

Definition
The G, , random graph model

A random graph G = (V, E) sampled from G, , is obtained as follows:
» G has n=|V| nodes.

» For each of the (;) possible pairs, {u, v}, with u,v € V and u # v, to
determine whether or not {u, v} € E, we flip an (independent) coin,
which lands heads with probability p (and tails with probability (1 —
p)). If it lands heads then {u, v} € E; otherwise {u, v} & E.
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Proof that R(k) > 2%/? using the probabilistic method:

Consider a random graph G = (V, E) sampled from G,, 1.
2
(We will later determine that letting n < 2%/2 suffices.)
Let V ={w1,..., va}. Note that for v; # v;, Pr({v;, vj} € E) = %

There are (Z) subsets of V of size k.

Let S1, S5, ..., S(n) be an enumeration of these subsets of V.
k

Fori=1,2,..., (Z), let E; be the event that S; forms either a k-clique
or a k-independent-set in the graph. Note that:
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Proof of R(k) > 2¥/? (continued):

Note that E = U,(g E; is the event that there exists either a k-clique
or a k-independent-set in the graph. But:

) ()
Pr(E) =Pr(| JE) < ) Pr(E) = (:) L)+

i=1 i=1
k
uestion: How small must n be so that (7) - 2_(2)+1 < 1?
k

For k > 2: n _n(n—1)...(n—k+1)< nk
k) k(k—1)...1 2k—1

Thus, if n < 2¥/2, then

k/2\k k2/2
<n> 2B < (272) G o 2t/ . —klk=1)/2+1
2k—1 2k—1

2 2
25 kT =SS g2
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Completion of the proof that R(k) > 2k/2:

For all kK > 4, 2_§+2 <1.
So, for k > 4, Pr(E) < 1,and thus P(E) =1— P(E) > 0.

But note that P(E) is the probability that in a random graph of size
n < 2%/2 there is no k-clique and no k-independent-set.

Thus, since Pr(E) > 0, such a graph must exist for any n < 2~/2,
Hence, R(k) > 2%/2 for k > 4.

It is easy to argue “by hand” that R(3) = 6, and clearly 6 > 2%/? =
2.828....

Hence, forall k > 3, R(k) > 2k/2, O
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A randomized algorithm?

» The proof directly yields a randomize Monte Carlo algorithm
for generating a random graph G ~ G/, of size n << 2k/2
which, with high probability, will have no k-clique and no k-
independent set.

» However, checking whether a graph, G has a k-clique (or k-
independent set), given both G and k as input, is NP-complete.
So, we can’t check it efficiently for large k.

> Hence, we have no way to convert this Monte Carlo algorithm
to an efficient randomized Las Vegas algorithm that always pro-
duces a graph with no k-clique and no k-independent set.
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Remarks on Ramsey numbers

> We have shown 2 — (V2K < R(k) < 4k = 2%k
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Remarks on Ramsey numbers
> We have shown 2 — (V2)k < R(k) < a% = 2%

» Despite decades of research by many combinatorists, nothing
significantly better was known until very recently! In particular:
no constant ¢ > v/2 is known such that ¢ < R(k), and

no constant ¢’ < 4 was known such that R(k) < (c/)*.
Major breakthrough (!') announced this year:

[Campos,Griffiths,Morris, Sahasrabudhe,2023]: There is a fixed
constant € > 0 (specifically, e = 277), such that for all sufficiently

large ke RUK) < (4= e)" .
» For specific small k, more is known:
R(1)=1; R(2)=2; R(B)=6 ; R(4)=18
43 < R(5) < 48
102 < R(6) < 165
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Why can’t we just compute R(k) exactly, for small k?

For each k, we know that 2¢/2 < R(k) < 2%,

So, for small fixed k, we could try to check, exhaustively, for each
r such that 2/2 < r < 22k whether there exists a graph G with r
vertices such that G has no k-clique and no k-independent set.

Question: How many graphs on r vertices are there?
There are 2(2) = 21172 (labeled) graphs on r vertices.
So, for r = 2k, we would have to check 22“(2~1)/2 graphs!!

So for k = 5, just for r = 2°, we have to check 2%° graphs!!
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful than us,
landed on Earth demanding to know the value of R(5),
or else they would destroy our planet.
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful than us,
landed on Earth demanding to know the value of R(5),
or else they would destroy our planet.

In that case, | believe we should marshal all our comput-
ers, and all our mathematicians, in an attempt to find
the value.
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful than us,
landed on Earth demanding to know the value of R(5),
or else they would destroy our planet.

In that case, | believe we should marshal all our comput-
ers, and all our mathematicians, in an attempt to find
the value.

But suppose instead they asked us for R(6).
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful than us,
landed on Earth demanding to know the value of R(5),
or else they would destroy our planet.

In that case, | believe we should marshal all our comput-
ers, and all our mathematicians, in an attempt to find
the value.

But suppose instead they asked us for R(6).

In that case, | believe we should attempt to destroy the
aliens.

RA - Lecture 10 - slide 14



Maximum Satisfiability (MAXSAT)

A propositional boolean formula in Conjunctive Normal Form (CNF),
is a conjunction of disjunctive clauses, where each disjunctive clause
is a “Or” of literals: {x1, ..., x,} U{=x1y..., Xn}

An example of a CNF formula looks something like this:

(X1\/_‘Xz\/ﬁX3)/\(_‘X1\/_‘X2)/\(X1\/Xz\/X3\/X4)/\...

The MAX-k-SAT problem: Given a CNF formula, ¢, with n vari-
ables and m clauses, where each clause has at most k literals, what
is the maximum number clauses that can be simultaneously satisfied
by a true/false assigment to all the variables?

Theorem: MAX-k-SAT is NP-hard, for all k > 2. In fact, it is NP-
hard even to approximate the maximum number of clauses within
some constant factor (the constant depending on k when there are
exactly k literals in each clause).
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Theorem

Given a CNF boolean formula with m clauses, where each clause con-
tains at least k literals, there exists a truth assigment to the variables
that satisfies at least m - (1 — ;—k) clauses.

(In particular, note that this means that for a 3-CNF formula where
every clause contains exactly 3 literals, there exists an assignment

that satisfies a 7/8 fraction of the clauses.)

Proof: Randomly assign true or false, with probability 1/2 each, in-
dependently, to each of the n variables.

The probability that the i’th clause, with k; literals, is satisfied is
(1— i) Hence, the expected total number of clauses that are satis-
fied (using linearity of expectation) is:

m

Y (1—279) > m(1—24. O

i=1
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» This proof can be converted to a randomized Las Vegas algo-
rithm (with expected polynomial running time) for computing
such a truth assignment that satisfies 7/8 fraction of the clauses,
when every clause has exactly 3 literals (MAX-E-3SAT).

» Furthermore, the algorithm can be derandomized, using the method
of conditional expectations.

Astonishingly:

Theorem

[Hastad,2001] If for any € > 0 there exists a polynomial-time (§ + €)-
approximation algorithm for MAX-E-3SAT, then P = NP.

The proof (beyond the scope of this course) involves much of the deep
theoretical developments behind the PCP (“Probabilitically Check-
able Proof”) characterization of NP.
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References

» Chapter 6, sections 6.1-6.3 of [MU].

> We will continue with Chapter 6 and the probabilistic method
next time.
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