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Tools of the probabilistic method

Recall again, the general idea of the probabilistic method: to show
the existence of a hard-to-find object with a desired property, Q, try to
construct a probability distribution over a sample space Ω of objects,
and show that with positive probability a randomly chosen object in Ω
has the property Q.

In this lecture we will highlight several commonly used tools and
techniques for applying the probabilistic method, some of which we
have seen and used already.

I The Expectation argument.

I “Sample and Modify” arguments.

I The Second Moment Method.

I The Lovasz Local Lemma.
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The Expectation Argument
Some basic facts we use in the “expectation argument”:

Proposition (Lemma 6.2)
For any random variable X with finite expectation, E[X ],

Pr[X ≥ E[X ]] > 0 and Pr[X ≤ E[X ]] > 0.

Proof.
For a discrete r.v., X , we have E[X ] =

∑
x x ·Pr[X = x ], where the sum

is over all x in the range of X . But if Pr[X ≥ E[X ]] = 0, then we have

E[X ] =
∑

x<E[X ]

x · Pr[X = x ]

<
∑

x<E[X ]

E[X ] · Pr[X = x ] = E[X ]

 ∑
x<E[X ]

Pr[X = x ]

 = E[X ].

Contradiction. Likewise, assuming Pr[X ≤ E [X ]] = 0 yields a
contradiction.
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The Expectation Argument – applications

We’ve already seen several applications of the expectation argument:

I MaxCut: For a random cut of the vertices of any graph
G = (V ,E) with m = |E | edges, into two sets (S,V \ S), the
expected number of edges that cross the cut is m/2.
Therefore such a cut exists.

I MaxSat: For a random truth assignment to the variables of any
boolean k -CNF formula, ϕ, with m clauses and exactly k literals
in each clause, the expected number of clauses that are
satisfied is m(1 − 1

2k ).
Therefore such a truth assignment exists.
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The Expectation Argument – another simple fact

Proposition
For any non-negative, integer random variable X with finite
expectation E[X ], we have

Pr[X > 0] = Pr[X ≥ 1] ≤ E[X ].

Proof.
E[X ] =

∞∑
i=0

i · Pr[X = i ]

=

∞∑
i=1

i · Pr[X = i ]

≥
∞∑

i=1

Pr[X = i ]

= Pr[X ≥ 1] = Pr[X > 0] (because X is an integer).
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“Sample and modify” arguments

I Sometimes attempting to directly generate the desired object
purely randomly doesn’t work.

I Instead, it sometimes pays off to do things in two stages:

1. First, randomly generate an object. It doesn’t necessarily
have the property, but it is likely to get you “close”.

2. Then, modify the randomly generated object by hand, fixing
it so that, with positive probability, it has the property.
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“Sample and modify” arguments – an application
Theorem. Any connected graph G = (V ,E) with n vertices and m
edges has an independent set of size n2

4m .

Proof. Let d = 2m
n be the average degree of a vertex.

1. Randomly delete each v ∈ V (and its edges), independently,
with probability (1 − 1

d ).

2. Remove any remaining edge and one of its two endpoints.

What’s left is an independent set. Let X be the number of vertices
that survive step (1.). We have E[X ] = n · 1

d = n
d . Let Y be the number

of edges that survive step (1.).

E[Y ] = m · ( 1
d
)2 =

nd
2
· ( 1

d
)2 =

n
2d
.

The second step removes all remaining edges, and at most Y
vertices. So, the algorithm terminates with an independent set of size
at least X − Y . But by linearity of expectation

E [X − Y ] =
n
d
−

n
2d

=
n

2d
=

n2

4m
.

2
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Second Moment Method

Recall: the second moment of a random variable X is E[X 2]. And the
variance is Var[X ] = E[X 2] − E[X ]2.

Sometimes, we can use the second moment/variance, together with
Chebyshev’s inequality, to bound probabilities of bad events.

Theorem (Theorem 6.7)
For any r.v., X , with finite E[X ] 6= 0 and finite Var[X ], we have

Pr[X = 0] ≤ Var[X ]

(E[X ])2 .

Proof. Easy consequence of Chebyshev’s inequality:

Pr[X = 0] ≤ Pr[|X − E[X ]| ≥ E[X ]] ≤ Var[X ]

(E[X ])2 .

2
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Threshold for 4-cliques in Gn,p
Recall the random graph model Gn,p.

We are interested in whether a randomly drawn graph G← Gn,p
contains a 4-clique or not.

Clearly the graph is more likely to have a 4-clique if p has a higher
value (since G← Gn,p is likely to have more edges).

Let the probability p = p(n) be a function of n.
We will show that there is a precise threshold for p(n), for the
property “G← Gn,p(n) has a 4-clique” to hold or not hold.

Theorem (Theorem 6.8)

1. If p(n) = o(n−2/3), then

lim
n→∞ Pr[G← Gn,p(n) has a 4-clique] = 0.

2. If p(n) = ω(n−2/3), then

lim
n→∞ Pr[G← Gn,p(n) has a 4-clique] = 1.
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Threshold for 4-cliques in Gn,p – Proof Sketch

Proof. Let G← Gn,p(n), and let X be the number of 4-cliques in
G = (V ,E).

Let C1,C2, . . . ,C(n
4)
⊆ V , be a listing of all 4-vertex subsets of V .

For 1 ≤ i ≤
(n

4

)
, define r.v. Xi so that Xi = 1 if Ci forms a clique, and

Xi = 0 otherwise. Clearly, X =
∑

i Xi . Then by linearity of expectation:

E[X ] =

(n
4)∑

i=1

E[Xi ] =

(
n
4

)
(p(n))6 = Θ(n4 · (p(n))6)

Now, notice that

1. if p(n) = o(n−2/3), then E[X ] ≈ n4 · o(n−4)→ 0, as n→∞.

2. if p(n) = ω(n−2/3), E[X ] ≈ n4 ·ω(n−4)→∞, as n→∞.

Hence, (1.): if p(n) = o(n−2/3), then since X is a non-negative integer
r.v., we know Pr[X ≥ 1] ≤ E[X ]→ 0. Hence limn→∞ Pr[X ≥ 1] = 0.
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Threshold for 4-cliques in Gn,p – Proof
Proof sketch continued. (2.) Suppose p(n) = ω(n−2/3). In that
case E[X ] ≈ n4ω(n−4)→∞ as n→∞. However, this does not imply
a lower bound for Pr[X > 0]. We need a second moment argument.

We want to calculate Var[X ], and show that Var[X ]
(E[X ])2 → 0 as n→∞.

Note that (E[X ])2 = Θ((n4 · (p(n))6)2) = Θ(n8(p(n))12).

So, if we can show that Var[X ] = o(n8(p(n))12) we are done.

It turns out this can be done. First, we need the following Lemma: for
any r.v., Y =

∑
i Yi , if the Yi ’s are all 0 − 1 random variables, then:

Var[Y ] ≤ E[Y ] + 2
∑
i 6=j

Cov[Yi ,Yj ].

For X the individual covariances Cov[Xi ,Xj ] can be bounded, via a
detailed case distinction based on the amount of “overlap” between
the respective sets Ci and Cj of vertices.
We will not provide further details of the proof here. See [MU] Section
6.5.1. Note: the book’s proof uses multinomial coefficient notation,
e.g.,

( n
n1,n2,n3

)
= n!

n1!n2!n3!
.
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The Lovász Local lemma

Consider a large bunch of “bad events”, E1, E2, . . . , En.

Suppose that in order to show existence of a desired object, using the
probabilistic method, we have to avoid all these bad events. In other
words, we want to show:

Pr[
n⋂

i=1

E i ] > 0 (1)

Supppose Pr[Ei ] < 1, for all i . (Otherwise, there’s no hope.)

If the events E1, . . . ,En are mutually independent then (1) is easy,
because:

Pr[
n⋂

i=1

E i ] =

n∏
i=1

Pr[E i ] =

n∏
i=1

(1 − Pr[Ei ]) > 0.

Note that this could be a very small probability, e.g., if n is very large,
but nevertheless it is a positive probability, so existence follows.
Unfortunately, often the bad events may not be independent.
The Lovasz Local Lemma allows us to establish (1) in contexts where
there is some limited dependencies between the Ei ’s.

RA – Lecture 11 – slide 12



The Lovász Local lemma
Let us define a particular event E to be mutually independent of a set
of events {E1,E2, . . . ,Ek } if for all subsets I ⊆ {1, . . . , k }, we have

Pr
[
E |
⋂

i∈I Ei
]
= Pr[E ].

Definition (6.1) A dependency graph for a set of events E1, . . . ,En
is a directed graph G = (V ,E) such that V = {1, . . . ,n} and for each
i ∈ V , the event Ei is mutually independent of the set of events
{Ej | (i , j) /∈ E}. The degree of G is the maximum out-degree of any
vertex in G.

Theorem (Lovász Local Lemma (symmetric version))
Let E1, . . . ,En be a set of events. Suppose that for some p ∈ (0,1)
and some d ∈ N the following conditions hold:

1. For all i , Pr[Ei ] ≤ p;

2. A dependency graph on {E1, . . . ,En} has degree ≤ d;

3. 4dp ≤ 1.

Then Pr

[
n⋂

i=1

E i

]
> 0.
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Important application: satisfiability of k -CNF formulas
Recall the k -SAT problem: Given a k -CNF boolean formula, ϕ,
where each clause has exactly k literals, decide whether ϕ is
satisfiable. Recall, k -SAT is NP-complete, already for k = 3.

Theorem. If no variable in a k-CNF formula ϕ appears in more than
2k

4k clauses, then ϕ is satisfiable.

Proof. Randomly and independently assign each boolean variable xi
either 0 or 1 with probability 1/2 each. Suppose there are m clauses,
C1, . . . ,Cm, in ϕ. Let Ei , i = 1, . . . ,m, denote the event that Ci is not
satisfied. Since each Ci has k literals, we have Pr[Ei ] = 2−k .

But Ei is independent of all Ej for which Ci and Cj don’t share any
variables. Since each of the k variables in Ci appears in ≤ 2k

4k
clauses, there is a dependency graph for the Ei ’s with degree
d ≤ k · 2k

4k = 2k

4 . Letting p = 2−k , we have 4dp ≤ 4 · 2k

4 · 2
−k = 1.

So we can apply the Lovasz Local Lemma to conclude:

Pr[
m⋂

i=1

E i ] > 0,

meaning ϕ is satisfiable. 2
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Outlook

I In the last lecture for this course, we will prove the Lovasz Local
Lemma.

I When we do, we will first give a classic, but non-constructive
proof.

I Then we will describe a more recent beautiful algorithmic proof
by Moser (2009) (later generalized by Moser & Tardos (2010)),
which gives us, in particular, a randomized (Las Vegas)
polynomial time algorithm for computing a satisfying assignment
for k -SAT instances that satisfy the conditions of the theorem we
stated on the prior slide.

I Read Chapter 6, sections 6.1-6.7, and section 6.10.

I Starting in the next lecture, Raul will cover Markov chains and
their uses in randomized algorithms.
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