
Randomized Algorithms
Lecture 1

Kousha Etessami & Raul Garcia-Patron Sanchez

School of Informatics
University of Edinburgh

RA (2023/24) – Lecture 1 – slide 1

Lectures and tutorials

Lectures:

I 14:10-15:00 Monday, Appleton Tower, room AT 2.05;

I 14:10-15:00 Wednesday, Appleton Tower, room AT 2.05.

Tutorials:

I Mondays 10:00-10:50, Old College, Teaching Room 6;

RA (2023/24) – Lecture 1 – slide 2

Lecturers & tutor

Lecturers:

I Kousha Etessami, IF 5.20 (Weeks 1-6)
Email: ketessami@inf.ed.ac.uk

Webpage: http://homepages.inf.ed.ac.uk/kousha

Weekly Office hour: Wednesdays, 11:00am–12:00noon.

I Raul Garcia-Patron Sanchez, IF-3.06A (Weeks 7-10)
Email: rgarcia3@ed.ac.uk

Webpage: https://www.inf.ed.ac.uk/people/staff/Raul_
Garcia-Patron_Sanchez.html

Tutor:

I Graham Freifeld
Email: g.freifeld@sms.ed.ac.uk

RA (2023/24) – Lecture 1 – slide 3

ketessami@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/kousha
rgarcia3@ed.ac.uk
https://www.inf.ed.ac.uk/people/staff/Raul_Garcia-Patron_Sanchez.html
https://www.inf.ed.ac.uk/people/staff/Raul_Garcia-Patron_Sanchez.html
g.freifeld@sms.ed.ac.uk

Randomized Algorithms

I Question: What can we compute efficiently (exactly or approxi-
mately), when we have the ability to “toss coins” in our algorithms?

In particular, can we do better than any “deterministic” algorithm?

I Of course, an algorithm that exploits randomness (random coin flips),
and hence is no longer deterministic, can exhibit:

a. variations in the answer/output it computes on the SAME input,
or

b. variations in its running time on the SAME input,
or

c. both!

I Although we can have variations in both running time and/or the
answer returned by a randomized algorithm, we will aim to calculate
the expected running-time, the expected value returned, and/or the
probability of each possible answer. And we will aim to show that
these are “good”, by proving bounds on the expected running-time,
the (expected) values returned, and their probabilities.

RA (2023/24) – Lecture 1 – slide 4

Textbook (essential for the course)

Probability and Computing - Randomized Algorithms and Probabilistic
Analysis, by Michael Mitzenmacher and Eli Upfal; Cambridge University
Press, 2017 (2nd ed).

I You are welcomed to work with Edition 1 if you find a cheaper copy.

I The library has a copy of Edition 1.

RA (2023/24) – Lecture 1 – slide 5

Syllabus
Chapter 1: Introduction, “Monte Carlo” and “Las Vegas” algorithms

(Some Examples: checking polynomial identities and
matrix products, a randomized min-cut algorithm.)

Chapter 2: Background in probability, random variables, expectation
(Applications: Coupon collecting, . . .)

Chapter 3: Moments & Deviations (Markov’s, Chebyshev’s, and Jensen’s
inequalities)

Chapter 4: Chernoff Bounds (Some applications: statistical sampling &
parameter estimation; set balancing)

Chapter 5: Birthday paradox, and Balls in Bins (Applications: Load
balancing, Hashing)

Chapter 6: The Probabilistic Method (random graphs, ramsey numbers,
algorithms for Max-cut; (Max-)Satisfiability; Lovász Local
Lemma and applications)

Chapters 7,11,12: Markov Chains and Random walks (hitting and cover
times, Markov chain Monte Carlo, mixing times, coupling,
applications to sampling and counting algorithms)

RA (2023/24) – Lecture 1 – slide 6

Course Webpage

Slides will be provided for each lecture (and notes sometimes if appropriate)
on the course’s DRUPAL webpage.

Recordings of lectures will be accessible from the LEARN page for RA.

The DRUPAL page will also provide access to tutorial sheets and solutions.
Coursework assignments will be available on LEARN, and you will submit
coursework via GradeScope, using the LEARN webpage for the course.

You will also need the book.

RA (2023/24) – Lecture 1 – slide 7

Pre-requisites

No official prerequisites.

However, strong maths background is necessary, especially Discrete Maths,
Linear Algebra, Discrete Probability, and confidence in proving things.

We expect you to have covered an “Algorithms class” in the past, and to
have done well in it (we can waive that, if your maths is very strong).

If you’re not sure, come and speak to me.

RA (2023/24) – Lecture 1 – slide 8

Math you should know

You should know:

I what it means to prove a theorem (induction, proof by contradiction,
etc . . .) and to be confident in your ability to do this.

I The definitions of the main asymptotic operators O(·), Ω(·), Θ(·),
and how to reason about them.

I How to multiply matrices or polynomials. Basic linear algebra.

I Some probability theory, definition of expectation (1st moment) and
variance (related to 2nd moment), linearity of expectation, simple
probability distributions and how they behave.

I Some graph theory.

RA (2023/24) – Lecture 1 – slide 9

Your work (formative and summative assessments)

I tutorial sheets

8 tutorials, once a week, weeks: 3 – 10.

I Coursework 1 (due Thursday of week 6)

I Coursework 2 (due Wednesday of week 10)

RA (2023/24) – Lecture 1 – slide 10

Coursework (summative assessment)

We have 2 Courseworks (problem-solving and proofs), and both will be
marked to give you feedback. Each coursework will count for 10% of the
overall mark. Details are:

I Coursework 1. Worth 10%

I OUT Thurs, 12th of October (Thurs week 4)
I DUE 12:00 noon Thurs, 26th October (Thurs week 6)
I FEEDBACK by Thurs, 9th of November (Thurs week 8)

I Coursework 2. Worth 10%

I OUT Wednesday, 8th of November (Wed, week 8)
I DUE 12:00 noon Wed, 22nd of November (Wed, week 10)
I FEEDBACK by Friday, 1st of December (Friday, week 11)

Feedback given will include marks to individual sub-parts of questions,
comments on scripts to explain why marks were lost. We will also distribute
sample solutions for the coursework.

RA (2023/24) – Lecture 1 – slide 11

Let’s get started:
a randomized algorithm for verifying polynomial identities

Suppose we are given two polynomials F (x) and G (x), where
F (x) is expressed as a product of d degree 1 polynomials, and

G (x) is given as usual, as a sum
∑d

i=0 cix
i of monomial terms.

Question: How fast can we decide whether F (x)≡G (x) ?

For example,

I F (x) = (x − 1)(x + 2)(x − 3)(x + 4)(x − 5)(x + 6);

I G (x) = x6 − 7x3 + 720.

The simple “multiply out” algorithm on F (x) (using no randomness) can
give us the answer in Θ(d2) time. (Assume for simplicity that each addition
or multiplication requires one time step.)

(There exists a different deterministic algorithm, using FFT, for “multiply
out” in Θ(d · lg2(d)) steps, but we will not discuss that algorithm.)

We instead use randomness to decide equility, without multiplying out
F (x).

RA (2023/24) – Lecture 1 – slide 12

Testing polynomial identities using random sampling

I Choose an integer x0 uniformly at random from the set of integers
{1, . . . , 100d}.

I Calculate F (x0). For each degree 1 polynomial (ax + b) . . . we do 1
addition and 2 multiplication.

Overall this takes at most d additions and 2d multiplications.

I We also calculate G (x0). We first do d multiplications to get all of
x0, x20 , x30 , . . . , xd0 . Then we multiply each term with its coefficient
and add everything up.

Overall this takes at most d additions and 2d multiplications.

I Next, compare the two resulting integers, and answer “YES” if they
are the same, “NO” otherwise.

Definition: Uniformly at Random (u.a.r.) - every possible outcome is
chosen with equal probability. (So, if there are m possible outcomes, each
is chosen with probability 1

m .)

RA (2023/24) – Lecture 1 – slide 13

Monte Carlo algorithm

This is a Monte Carlo algorithm (coined by Stan Ulam), meaning
that with some probability it can give a wrong answer.

The error in this case is one-sided.

I Obvious Claim 1: If F (x) does equal G (x), the algorithm
always returns “YES”.

I Claim 2: If F (x) 6≡ G (x), “NO” is returned with probability
≥ 99

100 (i.e., the failure probability is ≤ 1
100).

Why?

RA (2023/24) – Lecture 1 – slide 14

Testing polynomial identities

The probability that the algorithm gives an incorrect answer
(“YES” when it should be “NO”) equals

|{x : F (x) = G (x)} ∩ {1, . . . , 100d}|

100d
≤ |{x : F (x) = G (x)}|

100d

If F (x) 6≡ G (x), the set {x : F (x) = G (x)} is equal to the set of roots of
of the non-zero polynomial (F − G)(x), namely, {x : (F − G)(x) = 0}.

Fact: The number of roots of any non-zero polynomial is at most its
degree.
And the degree of F − G is clearly at most d .

So the error probability is ≤ d
100d = 1

100 .

RA (2023/24) – Lecture 1 – slide 15

Reducing the error probability

I One option to improve error rate is to increase the size of the sample
set, e.g., by sampling a random integer from {1, . . . , 1000d}. The
error probability would drop to ≤ 1

1000 . This improvement is not
“free” though: it’s more work to sample from larger sets.
(Not officially costed by us yet, but roughly we need to flip dlog2(m)e
fair coins in order to sample uniformly from the set [m] = {1, . . . ,m}.
So, sampling from the set [k ·d] costs dlog2(k)+log2(d)e coin flips. So
sampling from from [1000d] costs more than sampling from [100d],
but not much more: log2(100) ≈ 6.64 whereas log2(1000) ≈ 10.)

I Alternatively, suppose we run two random trials to test F (x)
?≡ G (x),

first drawing x1 u.a.r. from {1, . . . , 100d} and checking whether

F (x1)
?
= G (x1), next drawing x2 u.a.r. from {1, . . . , 100d} and check-

ing whether F (x2)
?
= G (x2).

We return “YES” if both calculations give matching values, otherwise
we return “NO”.

RA (2023/24) – Lecture 1 – slide 16

Repetition method to improve error probability of checking
polynomial identities

Observation
This refined algorithm (based on repetition) again gives one-sided error:

I If F (x) ≡ G (x), certainly we will see that F (x1) = G (x1), and that
F (x2) = G (x2) (answer: “YES”).

I If F (x) 6≡ G (x), we will show the algorithm returns “NO” with prob-
ability at least (1− 1

1002), i.e., with failure probability at most
(

1
1002

)
.

RA (2023/24) – Lecture 1 – slide 17

Refining the verification of polynomial identities (analysis)

Two options for “repeated sampling” from {1, . . . , 100d} (or any discrete
set): with replacement or without replacement.

with replacement: We draw the random value x2 uniformly at random from
{1, . . . , 100d} (including x1 as an option).
For this case, the two events of “generating x1” and “generating x2” are
(mutually) independent.

Definition (1.3)
Events A1, A2, A3, . . ., Ak are said to be mutually independent if for
any subset I ⊆ {1, . . . , k},

Pr[∩i∈IAi] =
∏
i∈I

Pr[Ai].

RA (2023/24) – Lecture 1 – slide 18

Refining the verification of polynomial identities (analysis)

with replacement (cont’d): Recall that if F (x) 6≡ G (x), then (F − G)(x)
has at most d roots; hence there are at most d values in {1, . . . , 100d}
that could give matching values for F (x), G (x).

If H1 is the event that “a root of (F − G)(x)” is generated on this first
trial, then Pr[H1] ≤ d/100d = (1/100).

But sampling with replacement, the outcome of the 2nd trial is independent
of what happened before. So H2 (the probability of generating a root of
(F−G)(x) on the 2nd trial) is independent of H1. Furthermore, it happens
to have identical probability.

The probability that both experiments would draw a root of (F − G)(x)
is, by independence (Definition 1.3), equal to

Pr[H1] · Pr[H2] ≤
1

100
· 1

100
= 1/10000.

RA (2023/24) – Lecture 1 – slide 19

Refining the verification of polynomial identities (analysis)

without replacement: Suppose we have already checked x1 and found F (x1) =
G (x1) (else we’d finish, with “NO”). Next, we draw a value u.a.r. from
the set {1, . . . , 100d} \ {x1}.

Events H ′
1 and H ′

2, corresponding to the event that the first and second
trial, respectively, generate a root of (F − G)(x), are now no longer inde-
pendent.

Definition (1.4)
Let A and B be two events, with Pr[B] > 0. The conditional
probability of event A given event B is

Pr(A | B)
.
=

Pr[A ∩ B]

Pr[B]
.

RA (2023/24) – Lecture 1 – slide 20

Refining the verification of polynomial identities (analysis)

without replacement (cont’d): Let us apply Definition 1.4, where B is H ′
1

and A is H ′
2. We want to calculate Pr[H ′

1 ∩ H ′
2] (the two samples both

giving a false match, i.e., both giving a root of (F-G)(x)). Using Definition
1.4, Pr[H ′

1 ∩ H ′
2] = Pr[H ′

1] · Pr[H ′
2 | H ′

1].

We know Pr[H ′
1] ≤ 1

100 .

For Pr[H ′
2 | H ′

1], note that conditioned on H ′
1 (and hence conditioned on

the integer removed being a root of (F −G)(x)), we have one less root of
(F −G)(x), d ′ − 1 instead of d ′, say, remaining in the set {1, . . . , 100d} \

{x1}. Hence Pr[H ′
2 | H ′

1] =
d ′−1

100d−1 . Then

Pr[H ′
1 ∩ H ′

2] = Pr[H ′
1] · Pr[H ′

2 | H ′
1] ≤

d ′

100d
· d ′ − 1

100d − 1
<

1

1002
,

where we have used the fact that d ′ ≤ d to deduce both that d ′

100d ≤
1

100

and that d ′−1
100d−1 <

1
100 .

RA (2023/24) – Lecture 1 – slide 21

Refining the verification of polynomial identities (wrapup)

We can generalize, to do any k > 1 different (mutually independent)
trials of values sampled from {1, . . . , 100d}.
The probability that all k trials result in a root of (F − G)(x) (and
hence the probability of failure) is at most 1

100k
.

I Hence we have “one-sided error” at most 1
100k

.

I The probability of failure (returning “YES” when F (x),G (x)
are non-identical) is always a little bit better in the “without
replacement” case). However, not much better, and note that
random sampling without replacement can be more costly/difficult
to implement (so, not often used in practice).

I This iterated testing algorithm will take Θ(k · d) time.

I Does it make any sense to do k > d iterations??

RA (2023/24) – Lecture 1 – slide 22

Reading Assignment

Start reading Chapter 1 of “Probability and Computing”.

You can also already start looking at Tutorial Sheet 1 (accessible on the
DRUPAL page for RA). Please work on that tutorial sheet prior to Monday
of Week 3 when it will be covered at the tutorial.

RA (2023/24) – Lecture 1 – slide 23

