
Randomized Algorithms
Lecture 12: proofs of the Lovasz Local Lemma

Kousha Etessami

RA – Lecture 12 – slide 1

The Lovász Local lemma

Consider a large bunch of “bad events”, E1, E2, . . . , En.

Suppose that in order to show existence of a desired object, using the
probabilistic method, we have to avoid all these bad events. In other
words, we want to show:

Pr[
n⋂

i=1

E i] > 0 (1)

Supppose Pr[Ei] < 1, for all i . (Otherwise, there’s no hope.)

If the events E1, . . . ,En are mutually independent then (1) is easy,
because:

Pr[
n⋂

i=1

E i] =

n∏
i=1

Pr[E i] =

n∏
i=1

(1 − Pr[Ei]) > 0.

Note that this could be a very small probability, e.g., if n is very large,
but nevertheless it is a positive probability, so existence follows.
Unfortunately, often the bad events may not be independent.
The Lovasz Local Lemma allows us to establish (1) in contexts where
there is some limited dependencies between the Ei ’s.

RA – Lecture 12 – slide 2

The Lovász Local lemma
Let us define a particular event A to be mutually independent of a set
of events {E1,E2, . . . ,Ek } if for all subsets I ⊆ {1, . . . , k }, we have

Pr
[
A |
⋂

i∈I E i
]
= Pr[A] = Pr

[
A |
⋂

i∈I Ei
]
.

Definition (6.1) A dependency graph for a set of events E1, . . . ,En
is a directed graph G = (V ,E) such that V = {1, . . . ,n} and for each
i ∈ V , the event Ei is mutually independent of the set of events
{Ej | (i , j) /∈ E}. The degree of G is the maximum out-degree of any
vertex in G.

Theorem (Lovász Local Lemma (symmetric version))
Let E1, . . . ,En be a set of events. Suppose that for some p ∈ (0,1)
and some d ∈ N the following conditions hold:

1. For all i , Pr[Ei] ≤ p;

2. A dependency graph on {E1, . . . ,En} has degree ≤ d;

3. 4dp ≤ 1.

Then Pr

[
n⋂

i=1

E i

]
> 0.

RA – Lecture 12 – slide 3

Important application: satisfiability of k -CNF formulas
Recall the k -SAT problem: Given a k -CNF boolean formula, ϕ,
where each clause has exactly k literals, decide whether ϕ is
satisfiable. Recall, k -SAT is NP-complete, already for k = 3.

Theorem. If no variable in a k-CNF formula ϕ appears in more than
2k

4k clauses, then ϕ is satisfiable.

Proof. Randomly and independently assign each boolean variable xi
either 0 or 1 with probability 1/2 each. Suppose there are m clauses,
C1, . . . ,Cm, in ϕ. Let Ei , i = 1, . . . ,m, denote the event that Ci is not
satisfied. Since each Ci has k literals, we have Pr[Ei] = 2−k .

But Ei is independent of all Ej for which Ci and Cj don’t share any
variables. Since each of the k variables in Ci appears in ≤ 2k

4k
clauses, there is a dependency graph for the Ei ’s with degree
d ≤ k · 2k

4k = 2k

4 . Letting p = 2−k , we have 4dp ≤ 4 · 2k

4 · 2
−k = 1.

So we can apply the Lovasz Local Lemma to conclude:

Pr[
m⋂

i=1

E i] > 0,

meaning ϕ is satisfiable. 2
RA – Lecture 12 – slide 4

Outlook

I In this last lecture we will prove the Lovasz Local Lemma.

I We will first give a classic, but non-constructive proof.

I Then we will describe a more recent beautiful algorithmic proof
by Moser (2009) (later generalized by Moser & Tardos (2010)),
which gives us, in particular, a randomized (Las Vegas)
polynomial time algorithm for computing a satisfying assignment
for k -SAT instances that satisfy the conditions of the theorem we
stated on the prior slide.

RA – Lecture 12 – slide 5

Proof of the Lovász Local Lemma
The key to the proof is to establish the following claim, by induction.

Claim. For s = 0, . . . ,n − 1, if S ⊂ {1, . . . ,n} & |S| ≤ s, then:

I Pr[
⋂

j∈S E j] > 0, and

I for all k 6∈ S, Pr[Ek |
⋂

j∈S E j] ≤ 2p.

Using this claim, it is easy to establish the full result. Expanding
Pr
[⋂n

i=1 E i
]

using the chain rule of conditional probabilities gives:

Pr

[
n⋂

i=1

E i

]
=

n∏
i=1

Pr

E i |

i−1⋂
j=1

E j

 =

n∏
i=1

1 − Pr

Ei |

i−1⋂
j=1

E j

≥

n∏
i=1

(1 − 2p) = (1 − 2p)n > 0.

In the last step, (1 − 2p) > 0 holds because 4dp ≤ 1, and hence
certainly 2p < 1, unless d = 0 in which case the whole Lovasz Local
Lemma would hold trivially (because all Ei ’s would then be mutually
independent).

RA – Lecture 12 – slide 6

proof of Key Claim
Base case (s = 0): in this case S = ∅. Hence Pr[

⋂
j∈S E j] = 1 > 0

holds vacuously, and Pr[Ek |
⋂

j∈S E j] = Pr[Ek] ≤ 2p holds by the
assumption that Pr[Ej] ≤ p for all j .

Induction step: Assume true for 0,1, . . . , s − 1. We show it for s.

We first show Pr[
⋂

j∈S E j] > 0.

If s = 1, this follows from the assumptions: Pr[E j] ≥ 1 − p.
For s > 1, then we use the induction hypothesis for (s − 1), . . . ,0.
Without loss of generality, suppose S = {1, . . . , s}. Then, as we’ve
already seen:

Pr

[⋂
i∈S

E i

]
=

s∏
i=1

Pr

E i |

i−1⋂
j=1

E j

 =

s∏
i=1

1 − Pr

Ei |

i−1⋂
j=1

E j

≥

s∏
i=1

(1 − 2p) = (1 − 2p)s > 0.

Here in the last line we have used the induction hypothesis for
(s − 1), . . . ,0.

RA – Lecture 12 – slide 7

proof of Key Claim (cont’d.)

Induction step (cont’d): We want to show Pr
[
Ek |

⋂
j∈S E j

]
≤ 2p.

Let S1 = {j ∈ S : (k , j) ∈ E}, and let S2 = S \ S1 = {j ∈ S : (k , j) 6∈ E}.

If S2 = S, then Ek is mutually independent of all events {E j | j ∈ S}, in
which case we would be done because
Pr
[
Ek |

⋂
j∈S E j

]
= Pr[Ek] ≤ p ≤ 2p.

Otherwise, we have |S2| < s, and S1 6= ∅. In this case, we can write

Pr

Ek |
⋂
j∈S

E j

 =
Pr
[
Ek ∩

⋂
i∈S1

E i |
⋂

j∈S2
E j

]
Pr
[⋂

i∈S1
E i |

⋂
j∈S2

E j

] (2)

The numerator on the right of (2) is ≤ Pr
[
Ek |

⋂
j∈S2

E j

]
which by

mutual independence is = Pr[Ek] ≤ p.
What’s left is to lower bound the denominator

Pr
[⋂

i∈S1
E i |

⋂
j∈S2

E j

]
.

RA – Lecture 12 – slide 8

proof of Key Claim (cont’d.)

Pr

⋂
i∈S1

E i |
⋂

j∈S2

E j

 =

1 − Pr

⋃
i∈S1

Ei |
⋂

j∈S2

E j

≥

1 −
∑
i∈S1

Pr

Ei |
⋂

j∈S2

E j

 (Union bound)

≥

1 −
∑
i∈S1

2p

 (induction hypothesis)

≥ 1 − d2p (since by assumption |S1| ≤ d)

≥ 1
2

(since 4pd ≤ 1, and hence 2pd ≤ 1
2)

Thus, we have

Pr

Ek |
⋂
j∈S

E j

 ≤ p
(1/2)

= 2p.

which completes the proof. 2
RA – Lecture 12 – slide 9

Note: this proof is non-constructive. For example, it gives us no clue
how to construct a satisfying assignment to a k -CNF formula where
every variable occurs in at most 2k

4k clauses, even though it shows that
such a satisfying assignment must exist.

We’re about to rectify that, with a beautiful new algorithmic proof due
to Moser (2009). (This was subsequently generalized by Moser &
Tardos (2010) to the setting of the general, asymmetric, Lovasz Local
Lemma.)

RA – Lecture 12 – slide 10

Moser’s proof (2009)

Theorem (Moser,2009)
If every clause in a k-CNF formula ϕ shares a variable with at most
2k−3 − 1 other clauses, then ϕ is satisfiable.
Furthermore, there exists a (Las Vegas) randomized algorithm that,
given such a ϕ as input, runs in expected polynomial time and
outputs a satisfying assignment to ϕ.

Proof. The proof shows that the following amazingly simple
randomized algorithm “works”.

RA – Lecture 12 – slide 11

Input: A list of clauses C1,C2, . . . ,Cm of a k -CNF formula, ϕ over n
variables {x1, x2, . . . , xn}.

Output: A satisfying truth assignment for ϕ.

Main routine:
α←− a random u.a.r. truth assignment to the variables;
while some Ci is not satisfied by α do

1. choose the unsatisfied Ci with the smallest index i;
2. call local-correct(Ci);

local-correct(C):

α←− same as α, except with variables in C resampled u.a.r.
while some Cj that shares a variable with C is not satisfied
by α do

1. choose such an unsatisfied Cj with the smallest index j
2. call local-correct(Cj);

Note: If this algorithm terminates, then it outputs a satisfying
assignment.
Question: Why does this algorithm terminate?? And why does it
terminate in expected polynomial time?

RA – Lecture 12 – slide 12

The argument for why the algorithm terminates with probability 1 (and
in expected polynomial time) is based on a beautifully simple and
elegant “entropy compression” argument.

The argument appeals to a basic and fundamental fact in Information
Theory, namely the Noiseless Coding Theorem ([Shannon,1948]).

However, you don’t need to know this theorem, nor understand any
Information Theory at all, in order to understand the intuitive
argument.

RA – Lecture 12 – slide 13

Let us re-state the algorithm, adding some book-keeping of “history”.

Main routine:
α←− a random u.a.r. truth assignment to the variables;
while some Ci is not satisfied by α do

1. choose the unsatisfied Ci with the smallest index i;
2. enter i in binary using dlog2(m)e bits in the history;
3. call local-correct(Ci);

local-correct(C):

α←− same as α, except with variables in C resampled u.a.r.
while some Cj that shares a variable with C is not satisfied
by α do

1. choose such an unsatisfied Cj with the smallest index
j;

2. enter “0” followed by a code for j in binary using only
k − 3 bits in the history;

3. call local-correct(Cj);

Enter “1” in the history;

RA – Lecture 12 – slide 14

Note that one way to fully describe the exact behavior of this
randomized algorithm on a given k -CNF formula is by giving the exact
sequence of random bits used by the algorithm.

In particular, let j be the number of “rounds” of the algorithms,
meaning the number of times local-correct has been called by the
algorithm.
Note that each “round” requires resampling the k boolean variables in
a single clause, and hence requires precisely k additional u.a.r.
random bits.
Then one way to describe in full the algorithm’s operation up to j
rounds is to specify the

n + (j · k)

u.a.r. random bits that were used by the algorithm.
(Note that knowing these bits determines every step taken by the
algorithm up to j rounds.)

However, there is also a different way to describe the full operation of
the algorithm, up to j rounds, using the history.

RA – Lecture 12 – slide 15

A different way to describe the algorithm’s behavior: History
Suppose the algorithm runs for J resampling rounds.

Consider the history that we have recorded. It records, in particular,
the index i in binary using dlog2(m)e bits every time an unsatisfied
clause Ci is resampled by the Main routine.

Additionally, it records a start flag bit, “0”, followed by an index j
recorded crucially using only k − 3 bits in the history, every time an
unsatisfied clause Cj is called inside a (recursive) invocation of
local-correct, and it records an end flag bit “1” just before a
(recursive) invocation of local-correct terminates.

We assume the history also keeps track of the current assigment of
truth values to the n boolean variables, which requires n bits.
In total, after J rounds, the recorded history requires at most:

n + mdlog2(m)e+ J(k − 1)

bits in total. This is because each resampling call requires at most
k − 1 bits in the history, including the two possible flag bits “0” and “1”,
plus the k − 3 bits to record j for the unsatisfied Cj being resampled
that shares a variable with the current clause C.

RA – Lecture 12 – slide 16

Key Claim. After J rounds of the algorithm, given the
n + mdlog2(m)e+ J(k − 1) bits of history, we can uniquely recover the
n + (J · k) u.a.r. random bits that were generated by the algorithm.

Proof. The key point is this: knowing the history, allows us to
reconstruct the precise sequence of recursive calls of local-correct,
and what clauses it was called on.
Then, going back through history, we know at each step which clause
was being resampled.
Crucially, if we know clause Cj has just been resampled, we know
exactly what the values of the variables in Cj were prior to being
resampled, because there is only one assigment to those variables
that does not satisfy Cj .
Hence, using the n bits of the assignment at the end of J rounds,
which is part of our “history”, we can “step back through time” using
the history, to uniquely decipher the values of the assigment during
every round of the algorithm, all the way back to the start, when the
first n bits were initially sampled. 2

RA – Lecture 12 – slide 17

Note that the Key Claim means that the n + mdlog2(m)e+ J(k − 1)
bits of history constitute a uniquely decipherable code for the
n + (J · k) u.a.r. random bits that describe the entire run of the
algorithm.

However, intuitively, this means that we should have

n + mdlog2(m)e+ J(k − 1) ≥ n + (J · k) (3)

which would imply that J ≤ mdlog2(m)e.

This is because if (3) does not hold, we would have a way of
compressing n + (J · k) u.a.r. random bits “down to”
n + mdlog2(m)e+ J(k − 1) bits.
Intuitively, this should be impossible to do on average, meaning the
expected code length for N random bits cannot be strictly less than N.

Indeed, this is impossible, thanks to basic facts in Information Theory.

RA – Lecture 12 – slide 18

Basic facts from Information theory
Theorem. (cf. Noiseless Coding Theorem [Shannon,1948]) The
expected code length of any binary uniquely decipherable code for a
random variable X is at least H(X), where H(X) is the entopy of X .

Proposition. For any N ≥ 1, the entropy of N u.a.r. random bits is
equal to N.
In other words, if X denotes a random variable corresponding to
sampling N u.a.r. random bits (each sequence of N bits has
probability 1

2N), then H(X) =
∑2N

j=1
1

2N log2(2
N) = N

∑2N

j=1
1

2N = N.

Hence, we can conclude that with positive probability the algorithm
must halt after J ≤ mdlog2(m)e rounds, meaning that a satisfying
assignment is found after J rounds. Hence a satisfying assigment
must exist.

We can also show (with just a little bit more analysis) that the
expected number of rounds of the algorithm is also O(mdlog2(m)e).
Hence, we have a randomized (Las Vegas) algorithm which runs in
expected polynomial time, and generates a satisfying assigment,
given such a k -CNF formula. 2

RA – Lecture 12 – slide 19

Conclusion

I That concluded our lectures.

I If you want to learn a bit more about entropy and Information
Theory see Chapter 10 of [MU], but this is not required and not
examinable.

RA – Lecture 12 – slide 20

