Randomized Algorithms
Lecture 2

Kousha Etessami

School of Informatics
University of Edinburgh

RA (2023/24) — Lecture 2 - slide 1



Prior lecture: checking polynomial identities

In the first lecture we considered the problem of taking two
polynomials of degree d, F(x) written as a product of degree-1
polynomials, and G(x) as a standard sum of monomial terms,
and deciding whether or not F(x) is identical to G(x).

The basic algorithm takes a single uniform random sample x4
from the set {1,...,100d} and calculates whether F(x;) and
G(xq) are equal. This testing algorithm gives an incorrect
answer with probability at most 11% (“one-sided” error).

» The sample drawn to perform the test is just a single value
chosen uniformly from {1,...,100d}. An easy probability
distribution to understand.

» To refine the algorithm, we can do k trials (and answer
“No” if we ever get “No” in any trial; answer “Yes”
otherwise.). This “powers up” the error probability, reducing

: 1
it to at most 5

RA (2023/24) — Lecture 2 — slide 2



Matrix multiplication verification

We are given three n x n matrices, A, B, & C, and we are
asked to verify whether or not

ABZC,

without carrying out the costly task of multiplying out AB.

Recall that the “obvious” algorithm for evaluating AB would take
©(n®) time steps (arithmetic operations). The algorithm with the
current best known asymptotic upper bound takes O(n?-3726--) steps
([Alman-Vassilevska Williams,2021]). But these are very involved
algorithms, building on decades of prior work (starting with
[Strassen’69]), and they involve rather large constants hidden in the
big-O notation.

We will instead show how to verify the identify AB = C (with high
probability) in O(n?) time, using a very simple and easy randomized
algorithm.

RA (2023/24) — Lecture 2 — slide 3



Matrix multiplication verification

Assume that the entries in the matrices are integers in Z, or even
rational numbers in Q.

The algorithm is parametrized by some natural number k > 1. The
larger k is, the smaller the probability of failure, but also the larger the
running time.

Algorithm MMVERIFY(n, A, B, C, k)
1. forj=1,...,kdo

2 Generate a vector x € {0, 1}" uniformly at random.
3 Calculate vector y& = B- x in O(n?) time.

4 Calculate vector y*8 = A. yBin O(n?) time.

5. Calculate vector y© = C - x in O(r?) time.

6 if y48 £ yC (i.e., if they differ in any coordinate)
7 return “NO”

8. return “YES”

RA (2023/24) — Lecture 2 — slide 4



Analysing MMVerify

First, let us observe that each of steps 3., 4., 5. can be carried out in
O(n?) steps, for a given vector x € {0,1}".
Next, for the analysis, we will show:

“One-sided error”

if AB = C: In this case, we know that AB - x = Cx for every
x €{0,1}". Hence MMVERIFY is guaranteed to return
the correct answer “YES”.

if AB # C: We will next show that in this case, when a vector x is
drawn u.a.r. from {0, 1}", the probability that
AB-x = C-xisatmost 1/2.

After this analysis, we will calculate the effect of doing k trials.

RA (2023/24) — Lecture 2 — slide 5



Analysing MMVerify: AB +# C

Consider the two n x n matrices AB and C. We are assuming they
are not identical, so there must be at least one cell (i*, j*) such that
the values (AB);-j« # Cixj~.

Let D = (AB— C). Then equivalently, we have D;-;- # 0.

Consider row i* of D, and consider its product with vector x € {0, 1}":

n
j=1
This gives the value for position i* in the length-n vector computed by
D - x.
We will show that this value will be 0 with probability at most 1/2.

RA (2023/24) — Lecture 2 — slide 6



Analysing MMVerify: AB +# C

When drawing a random x € {0, 1} uniformly at random (u.a.r.),
each x has equal probability (1/2").

This is equivalent to choosing the values x; € {0, 1} independently
with probability 1/2, for each i € [n] ={1,...,n}.

Use this in the analysis (principle of deferred decisions).
Write 37 | D;-j - X; as

Jeln\{j*}

Think about sampling x (deferred decisions) as a {0, 1}~ vector first,
followed by the value for x;- last.

RA (2023/24) — Lecture 2 — slide 7



Analysing MMVerify: AB +# C

After sampling the {0, 1}~ vector for positions {xj|jen\j}, we
now have a fixed value for

JeN{*}

Then no matter over which “ring” our arithmetic is in (whether
integers, or rationals, or even a finite field), there is at most one value
which could be added to this to get 0 (maybe 0, maybe 1, maybe
some other non-zero value).

Also, we know Dj-j- # 0. Sampling x;- last, we will get
D« j- - xj« = Dj«j~ (which is non-zero) with prob. 1/2, and D;«j- - x;- =0
with prob. 1/2. Hence

n
Pr [ZD/*]-~)(]-—0:| <1/2
j=1

RA (2023/24) — Lecture 2 — slide 8



All trials of MMVerify: AB # C

Previous slides present the analysis of what happens (AB # C case)
on a single sample from {0, 1}” (tested in lines 2.-7. of Algorithm
MMVERIFY).

» The Algorithm is set up to return “no” (and terminate) on the first
trial where it discovers a mismatch between AB - x and C - x.

» It only returns “yes” if it passed through all k iterations of the
loop with all trials giving a match.

» “Every trial gives a match” is the bad event for analysing the
AB + C case.

RA (2023/24) — Lecture 2 — slide 9



All trials of MMVerify: AB # C

Notice that the k repeated trials fit into the paradigm of “sampling with
replacement”.

Let E; be the event that the j-th sampled x satisfies D- x =0 (i.e.,
AB-x=C:x).

Ei, ..., Ex are all mutually independent. Thus, applying Defn 1.3 from

lecture 1,
Nj= K El HPr

We have already shown that Pr(E;] < 1/2.

Hence Pr[ﬁ;‘:1 Ejl, the probability that the algorithm returns “YES” is at
most 1/2% (in the case of AB # C).

This completes the proof that with k repeated trials the probability of
error (an incorrect answer) by the algorithm is at most 1/2%. O

RA (2023/24) — Lecture 2 — slide 10



Reading Assignment

Continue reading Chapter 1 of “Probability and Computing”.

RA (2023/24) — Lecture 2 — slide 11



