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Prior lecture: checking polynomial identities
In the first lecture we considered the problem of taking two
polynomials of degree d , F (x) written as a product of degree-1
polynomials, and G(x) as a standard sum of monomial terms,
and deciding whether or not F (x) is identical to G(x).

The basic algorithm takes a single uniform random sample x1
from the set {1, . . . ,100d } and calculates whether F (x1) and
G(x1) are equal. This testing algorithm gives an incorrect
answer with probability at most 1

100 (“one-sided” error).

I The sample drawn to perform the test is just a single value
chosen uniformly from {1, . . . ,100d }. An easy probability
distribution to understand.

I To refine the algorithm, we can do k trials (and answer
“No” if we ever get “No” in any trial; answer “Yes”
otherwise.). This “powers up” the error probability, reducing
it to at most 1

100k .
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Matrix multiplication verification

We are given three n × n matrices, A, B, & C, and we are
asked to verify whether or not

AB ?
= C,

without carrying out the costly task of multiplying out AB.

Recall that the “obvious” algorithm for evaluating AB would take
Θ(n3) time steps (arithmetic operations). The algorithm with the
current best known asymptotic upper bound takes O(n2.37286...) steps
([Alman-Vassilevska Williams,2021]). But these are very involved
algorithms, building on decades of prior work (starting with
[Strassen’69]), and they involve rather large constants hidden in the
big-O notation.

We will instead show how to verify the identify AB = C (with high
probability) in O(n2) time, using a very simple and easy randomized
algorithm.
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Matrix multiplication verification
Assume that the entries in the matrices are integers in Z, or even
rational numbers in Q.

The algorithm is parametrized by some natural number k ≥ 1. The
larger k is, the smaller the probability of failure, but also the larger the
running time.

Algorithm MMVERIFY(n,A,B,C, k)

1. for j = 1, . . . , k do
2. Generate a vector x ∈ {0,1}n uniformly at random.
3. Calculate vector yB = B · x in O(n2) time.
4. Calculate vector yAB = A · yB in O(n2) time.
5. Calculate vector yC = C · x in O(n2) time.
6. if yAB 6= yC (i.e., if they differ in any coordinate)
7. return “NO”
8. return “YES”
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Analysing MMVerify

First, let us observe that each of steps 3., 4., 5. can be carried out in
O(n2) steps, for a given vector x ∈ {0,1}n.
Next, for the analysis, we will show:

“One-sided error”

if AB = C: In this case, we know that AB · x = Cx for every
x ∈ {0,1}n. Hence MMVERIFY is guaranteed to return
the correct answer “YES”.

if AB 6= C: We will next show that in this case, when a vector x is
drawn u.a.r. from {0,1}n, the probability that
AB · x = C · x is at most 1/2.

After this analysis, we will calculate the effect of doing k trials.
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Analysing MMVerify: AB 6= C

Consider the two n × n matrices AB and C. We are assuming they
are not identical, so there must be at least one cell (i∗, j∗) such that
the values (AB)i∗ j∗ 6= Ci∗ j∗ .

Let D = (AB − C). Then equivalently, we have Di∗ j∗ 6= 0.

Consider row i∗ of D, and consider its product with vector x ∈ {0,1}n:

n∑
j=1

Di∗ j · xj .

This gives the value for position i∗ in the length-n vector computed by
D · x .

We will show that this value will be 0 with probability at most 1/2.
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Analysing MMVerify: AB 6= C

When drawing a random x ∈ {0,1}n uniformly at random (u.a.r.),
each x has equal probability (1/2n).

This is equivalent to choosing the values xi ∈ {0,1} independently
with probability 1/2, for each i ∈ [n] = {1, . . . ,n}.

Use this in the analysis (principle of deferred decisions).
Write

∑n
j=1 Di∗ j · xj as ∑

j∈[n]\{j∗}

Di∗ j · xj

+ Di∗ j∗ · xj∗

Think about sampling x (deferred decisions) as a {0,1}n−1 vector first,
followed by the value for xj∗ last.
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Analysing MMVerify: AB 6= C
After sampling the {0,1}n−1 vector for positions {xj | j ∈ [n] \ j∗}, we
now have a fixed value for ∑

j∈[n]\{j∗}

Di∗ j · xj .

Then no matter over which “ring” our arithmetic is in (whether
integers, or rationals, or even a finite field), there is at most one value
which could be added to this to get 0 (maybe 0, maybe 1, maybe
some other non-zero value).

Also, we know Di∗ j∗ 6= 0. Sampling xj∗ last, we will get
Di∗ j∗ · xj∗ = Di∗ j∗ (which is non-zero) with prob. 1/2, and Di∗ j∗ · xj∗ = 0
with prob. 1/2. Hence

Pr

 n∑
j=1

Di∗ j · xj = 0

 ≤ 1/2
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All trials of MMVerify: AB 6= C

Previous slides present the analysis of what happens (AB 6= C case)
on a single sample from {0,1}n (tested in lines 2.-7. of Algorithm
MMVERIFY).

I The Algorithm is set up to return “no” (and terminate) on the first
trial where it discovers a mismatch between AB · x and C · x .

I It only returns “yes” if it passed through all k iterations of the
loop with all trials giving a match.

I “Every trial gives a match” is the bad event for analysing the
AB 6= C case.
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All trials of MMVerify: AB 6= C

Notice that the k repeated trials fit into the paradigm of “sampling with
replacement”.

Let Ej be the event that the j-th sampled x satisfies D · x = 0 (i.e.,
AB · x = C · x).

E1, . . . ,Ek are all mutually independent. Thus, applying Defn 1.3 from
lecture 1,

Pr[∩k
j=1Ej ] =

k∏
j=1

Pr[Ej ].

We have already shown that Pr[Ej ] ≤ 1/2.

Hence Pr[∩k
j=1Ej ], the probability that the algorithm returns “YES” is at

most 1/2k (in the case of AB 6= C).

This completes the proof that with k repeated trials the probability of
error (an incorrect answer) by the algorithm is at most 1/2k . 2

RA (2023/24) – Lecture 2 – slide 10



Reading Assignment

Continue reading Chapter 1 of “Probability and Computing”.
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