Randomized Algorithms Lecture 2

Kousha Etessami

School of Informatics

University of Edinburgh

RA (2023/24) - Lecture 2 - slide 1

Prior lecture: checking polynomial identities

In the first lecture we considered the problem of taking two polynomials of degree $d, F(x)$ written as a product of degree-1 polynomials, and $G(x)$ as a standard sum of monomial terms, and deciding whether or not $F(x)$ is identical to $G(x)$.

The basic algorithm takes a single uniform random sample x_{1} from the set $\{1, \ldots, 100 d\}$ and calculates whether $F\left(x_{1}\right)$ and $G\left(x_{1}\right)$ are equal. This testing algorithm gives an incorrect answer with probability at most $\frac{1}{100}$ ("one-sided" error).

- The sample drawn to perform the test is just a single value chosen uniformly from $\{1, \ldots, 100 d\}$. An easy probability distribution to understand.
- To refine the algorithm, we can do k trials (and answer "No" if we ever get "No" in any trial; answer "Yes" otherwise.). This "powers up" the error probability, reducing it to at most $\frac{1}{100^{k}}$.

Matrix multiplication verification

We are given three $n \times n$ matrices, $A, B, \& C$, and we are asked to verify whether or not

$$
A B \stackrel{?}{=} C
$$

without carrying out the costly task of multiplying out $A B$.
Recall that the "obvious" algorithm for evaluating $A B$ would take $\Theta\left(n^{3}\right)$ time steps (arithmetic operations). The algorithm with the current best known asymptotic upper bound takes O ($\left.n^{2.37286 \ldots}\right)$ steps ([Alman-Vassilevska Williams,2021]). But these are very involved algorithms, building on decades of prior work (starting with [Strassen'69]), and they involve rather large constants hidden in the big-O notation.
We will instead show how to verify the identify $A B=C$ (with high probability) in $O\left(n^{2}\right)$ time, using a very simple and easy randomized algorithm.

Matrix multiplication verification

Assume that the entries in the matrices are integers in \mathbb{Z}, or even rational numbers in \mathbb{Q}.

The algorithm is parametrized by some natural number $k \geq 1$. The larger k is, the smaller the probability of failure, but also the larger the running time.

Algorithm MMVERIFY(n, A, B, C, k)

1. for $j=1, \ldots, k$ do
2. Generate a vector $x \in\{0,1\}^{n}$ uniformly at random.
3. \quad Calculate vector $y^{B}=B \cdot x$ in $O\left(n^{2}\right)$ time.
4. \quad Calculate vector $y^{A B}=A \cdot y^{B}$ in $O\left(n^{2}\right)$ time.
5. \quad Calculate vector $y^{C}=C \cdot x$ in $O\left(n^{2}\right)$ time.
6. if $y^{A B} \neq y^{C} \quad$ (i.e., if they differ in any coordinate)
7.

return "NO"
8. return "YES"

RA (2023/24) - Lecture 2 - slide 4

Analysing MMVerify

First, let us observe that each of steps 3., 4., 5. can be carried out in $O\left(n^{2}\right)$ steps, for a given vector $x \in\{0,1\}^{n}$.
Next, for the analysis, we will show:
"One-sided error"
if $A B=C$: In this case, we know that $A B \cdot x=C x$ for every $x \in\{0,1\}^{n}$. Hence MMVERIFY is guaranteed to return the correct answer "YES".
if $A B \neq C$: We will next show that in this case, when a vector x is drawn u.a.r. from $\{0,1\}^{n}$, the probability that $A B \cdot x=C \cdot x$ is at most $1 / 2$.

After this analysis, we will calculate the effect of doing k trials.

Analysing MMVerify: $A B \neq C$

Consider the two $n \times n$ matrices $A B$ and C. We are assuming they are not identical, so there must be at least one cell $\left(i^{*}, j^{*}\right)$ such that the values $(A B)_{i^{*} j^{*}} \neq C_{i^{*} j^{*}}$.
Let $D=(A B-C)$. Then equivalently, we have $D_{i^{*} j^{*}} \neq 0$.
Consider row i^{*} of D, and consider its product with vector $x \in\{0,1\}^{n}$:

$$
\sum_{j=1}^{n} D_{i^{*} j} \cdot x_{j}
$$

This gives the value for position i^{*} in the length n vector computed by $D \cdot x$.

We will show that this value will be 0 with probability at most $1 / 2$.

Analysing MMVerify: $A B \neq C$

When drawing a random $x \in\{0,1\}^{n}$ uniformly at random (u.a.r.), each x has equal probability $\left(1 / 2^{n}\right)$.
This is equivalent to choosing the values $x_{i} \in\{0,1\}$ independently with probability $1 / 2$, for each $i \in[n]=\{1, \ldots, n\}$.
Use this in the analysis (principle of deferred decisions).
Write $\sum_{j=1}^{n} D_{i * j} \cdot x_{j}$ as

$$
\left(\sum_{\left.j \in[n] \backslash j^{*}\right\}} D_{i^{*} j} \cdot x_{j}\right)+D_{i^{*} j^{*}} \cdot x_{j^{*}}
$$

Think about sampling x (deferred decisions) as a $\{0,1\}^{n-1}$ vector first, followed by the value for $x_{j^{*}}$ last.

RA (2023/24) - Lecture 2 - slide 7

Analysing MMVerify: $A B \neq C$

After sampling the $\{0,1\}^{n-1}$ vector for positions $\left\{x_{j} \mid j \in[n] \backslash j^{*}\right\}$, we now have a fixed value for

$$
\sum_{\left.j \in[n] \backslash j^{*}\right\}} D_{i^{*} j} \cdot x_{j} .
$$

Then no matter over which "ring" our arithmetic is in (whether integers, or rationals, or even a finite field), there is at most one value which could be added to this to get 0 (maybe 0, maybe 1, maybe some other non-zero value).

Also, we know $D_{i^{*} j^{*}} \neq 0$. Sampling $x_{j^{*}}$ last, we will get
$D_{i^{*} j^{*}} \cdot x_{j^{*}}=D_{i^{*} j^{*}}$ (which is non-zero) with prob. $1 / 2$, and $D_{i^{*} j^{*}} \cdot x_{j^{*}}=0$ with prob. 1/2. Hence

$$
\operatorname{Pr}\left[\sum_{j=1}^{n} D_{i^{*} j} \cdot x_{j}=0\right] \leq 1 / 2
$$

RA (2023/24) - Lecture 2 - slide 8

All trials of MMVerify: $A B \neq C$

Previous slides present the analysis of what happens ($A B \neq C$ case) on a single sample from $\{0,1\}^{n}$ (tested in lines 2.-7. of Algorithm MMVERIFY).

- The Algorithm is set up to return "no" (and terminate) on the first trial where it discovers a mismatch between $A B \cdot x$ and $C \cdot x$.
- It only returns "yes" if it passed through all k iterations of the loop with all trials giving a match.
- "Every trial gives a match" is the bad event for analysing the $A B \neq C$ case.

All trials of MMVerify: $A B \neq C$

Notice that the k repeated trials fit into the paradigm of "sampling with replacement".
Let E_{j} be the event that the j-th sampled x satisfies $D \cdot x=0$ (i.e., $A B \cdot x=C \cdot x)$.
E_{1}, \ldots, E_{k} are all mutually independent. Thus, applying Defn 1.3 from lecture 1,

$$
\operatorname{Pr}\left[\cap_{j=1}^{k} E_{j}\right]=\prod_{j=1}^{k} \operatorname{Pr}\left[E_{j}\right] .
$$

We have already shown that $\operatorname{Pr}\left[E_{j}\right] \leq 1 / 2$.
Hence $\operatorname{Pr}\left[\cap_{j=1}^{k} E_{j}\right]$, the probability that the algorithm returns "YES" is at most $1 / 2^{k}$ (in the case of $A B \neq C$).
This completes the proof that with k repeated trials the probability of error (an incorrect answer) by the algorithm is at most $1 / 2^{k}$. \square

Reading Assignment

Continue reading Chapter 1 of "Probability and Computing".

