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Min-Cut: Karger’s randomized contraction algorithm

For an undirected graph G = (V , E), a cut is a partition of the vertices

V into two non-empty sets S and V \ S. A (global) minimum cut is a

cut such that the total number of edges crossing the cut is minimized.

The Min-Cut problem: given G, find a minimum cut.

We assume w.l.o.g. that the graph G is connected (otherwise its “min-

cut” has size 0, and we can determine whetherG is connected in linear

time O(|V |+ |E |)).

Karger’s (first) randomized algorithm (1993): D. Karger, “Global min-

cuts in RNC and other ramifications of a simple mincut algorithm”,

SODA 1993.

Repeatedly choose an edge uniformly at random (from the
not-yet contracted edges) and contract its endpoints.
When there are just two “vertices” le�, return that cut.

We will show this simple algorithm finds a minimum cut with high

probability in time O(m · n2 log n), where n = |V | and m = |E |.
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History of min-cut algorithms

I A Õ(mn2) deterministic min-cut algorithm already follows from

(directed) maximum flow algorithms, and the max-flow min-cut

theorem ([Ford-Fulkerson’62] , [Gomory-Hu’61]).

I Later, be�er deterministicO(mn log n) time algorithms were given:

[Nagamochi-Ibaraki,1992], [Hao-Orlin,1994], [Stoer-Wagner,1997].

I Meanwhile Karger (1993) gave his first, very simple, randomized
algorithm which we will analyze, with running timeO(mn2 log n).

I Later, Karger and Stein (1996) improved on this randomized al-

gorithm to give running time O(n2 · log3 n).
I Finally, Karger (1996,2000), gave an improved randomized algo-

rithm with “near-linear” running time: O(m log3 n).
I Very recently, deterministic “near-linear” time algorithms obtained:

O(m log12 n) [Kawarabayashi-Thorup,2015]; O(m log2 n log log n)
[Henzinger-Rao-Wang,2017]; m1+o(1)

forweighted graphs [Li,2021].

I Experimental comparison by [Chekuri et. al., 1997] suggested

the best performing algorithms in practice, up to 1996, were

those of [Hao-Orlin,1994] and [Nagamochi-Ibaraki,1992].
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Example

The min cut has size 2.
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Example

The algorithm randomly picks one edge out of 14.

We hope to avoid the min cut.

In this case the “bad” thing happens with probability
2

14
.
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Example

Contraction:

merge the endpoints of an edge into one.

Parallel edges are preserved, and self-loops removed.
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Example

If we contract a cut edge, then we will not find that cut.
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Example

Ideally, we should contract all edges except the min cut.
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Implementation of the algorithm

Naive implementation of contractions would require complicated data struc-

tures to keep track of everything.

An equivalent way of looking at the algorithm is to pick a random permu-

tation of all edges first, and then contracting edges from the first to the

last.

What we need to find is the shortest prefix of the permutation such that

those edges induce exactly two connected components.

Finding the connected components induced by a prefix with m ′
edges is

known to take linear time O(m ′ + n). Thus, by a binary search, we can find

the shortest prefix that induces two components in O(m logm) time. By

being a bit more clever during binary search, we can do it in time

O(m) + O(m/2) + O(m/4) + · · · = O(m).

Denote by KargerOneTrial one iteration of Karger’s algorithm.
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Karger’s contraction algorithm - analysis

Let k be the size of a min cut of G, let S ⊂ V be a specific partition where

CS , the set of edges between S and V \ S, is of cardinality k.

We must have deg(v) ≥ k for every v ∈ V . (Why?)

The algorithm chooses a sequence of random edges e1, e2, . . .

Let Ej be the event that ej 6∈ CS . (“Good” event.)

Calculating Pr[E1], there are k “cut-edges” (from CS), and at least k · n/2

edges overall. Hence

Pr[E1] ≥ 1 −
2k
kn
≥ 1 −

2

n
.

We next calculate Pr[E2 | E1], the probability that the 2nd edge avoids CS ,

conditional that the first edge was outside CS .
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Karger’s contraction algorithm - analysis

Pr[E2 | E1]:

I Still have all k CS edges (since we assumed E1).

I Graph now has (n − 1) “vertices”, each having degree ≥ k (why?);

hence the graph now has at least k · (n− 1)/2 edges overall.

Hence

Pr[E2 | E1] ≥ 1 −
2k

(n− 1)k
= 1 −

2

n− 1

.

Next we will generalise this bound, namely, for any initial sequence of j
edge-choices satisfying ∩ji=1

Ei , we give a lower bound on

Pr[Ej+1 | E1 ∩ . . . ∩ Ej].
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Karger’s contraction Algorithm - Analysis

For any j = 1, . . . , n − 3, we analyse the conditional probability Pr[Ej+1 |

E1 ∩ . . . ∩ Ej]:

I All k CS edges still remain (since we assume E1 ∩ . . . ∩ Ej).

I How many edges have been removed? At least j

Not necessarily exactly j, as we might have contracted “parallel edges”

created by earlier contractions, which has the e�ect of removing more

than one edge at a time when we contract a new edge.

I How many vertices have been removed? Exactly j

The graph now has (n− j) “vertices”, and each must have degree ≥ k
(why?); hence the graph now has at least k · (n− j)/2 edges overall.

Therefore

Pr[Ej+1 | E1 ∩ . . . ∩ Ej] ≥ 1 −
2k

(n− j)k
= 1 −

2

n− j
.
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Karger’s contraction Algorithm - Analysis

We hope that our contraction of random edges will lead us to a scenario

where we are le� with two “vertices” without contracting any of the CS

edges (min-cut) on the way.

If we achieve this, then one “vertex” will contain all of S, the other “vertex”

all of V \ S, and the parallel edges between them are exactly the edges in

the min-cut CS .

The probability we get to this nice scenario is the probability that E1 holds,

and E2 holds, and E3 holds, and . . .
But we can rewrite this probability using the definition of conditional prob-

ability. Formally,

Pr[∩n−2

j=1
Ej] = Pr[E1] · Pr[E2 | E1] · . . . · Pr[En−2 | ∩n−3

i=1
Ei]

=

n−2∏
j=1

Pr[Ej | ∩j−1

i=1
Ei]

≥
n−2∏
j=1

(
1 −

2

n− (j − 1)

)
=

n∏
j=3

(
1 −

2

j

)
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Karger’s contraction Algorithm - Analysis

Expanding

∏n
j=3

(
1 − 2

j

)
, we have

n∏
j=3

(
1 −

2

j

)
=

n∏
j=3

j − 2

j

=

(
1

3

)(
2

4

)(
3

5

)(
4

6

)
. . .

(
n− 4

n− 2

)(
n− 3

n− 1

)(
n− 2

n

)

=
2

n(n− 1)

So the probability that a single “run” of KargerOneTrial generates a par-

ticular minimum cut of the original graph is at least 2

n(n−1) .

Hence the probability that it generates some minimum cut could be even

more in practice. (Why?)
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Karger’s contraction Algorithm - Repeated iterations

We can improve our success probability by running KargerOneTrial many

times, and returning the minimum of all the di�erent cuts it produces.

If we do k trials, the probability that none is a min cut is at most(
1 −

2

n(n− 1)

)k

.

We can relate this to e ∼ 2.71828 . . . (the base of the natural logarithm)

using the following fact
1
: For all n ≥ 1, (1 − 1

n )
n ≤ 1

e .

⇒ (
1 −

2

n(n− 1)

) n(n−1)
2

≤ e−1,

and taking k = c · n(n−1)
2
· ln(n), we get

(
1 −

2

n(n− 1)

)k

=

(1 −
2

n(n− 1)

) n(n−1)
2

c ln(n)

≤ (e−1)c ln(n) =
1

nc
.

1
To see why this is true, first notice that for all x ∈ R, ex ≥ 1 + x . Now let

x = −1/n, and raise both sides to the power −(1/x) = n.
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Wrapping up

I Probability tools used in our analysis were simple: we have used con-

ditional probability iteratively:

Pr[∩n−2

j=1
Ej] = Pr[∩n−2

j=2
Ej | E1] · Pr[E1]

= Pr[∩n−2

j=3
Ej | E1 ∩ E2] · Pr[E1 ∩ E2 | E1] · Pr[E1]

= . . .

(also used simple inequalities relating (1 − 1

n )
n

and e)

I No approximation guarantee - analysis does not address the quality

of CS when it fails to be optimum.
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#Min-Cut

We have shown that for a particular min-cut, C, the probability of finding

C is at least
2

n(n−1) . This implies that |C| ≤ n(n−1)
2

, where C is the set of all

Min-Cuts.

Let FC be the event of finding C. For C ′ 6= C, Pr[FC ∩ FC ′ ] = 0.

Thus, Pr [∪C∈CFC] =
∑

C∈C Pr[FC] ≤ 1.

On the other hand,

∑
C∈C Pr[FC] ≥

∑
C∈C

2

n(n−1) = 2|C|

n(n−1) .

Thus, |C| ≤ n(n−1)
2

.

A u.a.r. cut is minimum with probability
|C|

2
n−1
≤ n(n−1)

2(2
n−1) . Hence Karger’s

algorithm succeeds with probability much higher than a random cut.
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Other use of random contraction

Suppose each edge of a graph G = (V , E) “fails” with

prob p, independently. Let Gp denote the randomly

generated graph that results from the failures. Can

we compute or approximate Pr[Gp is connected] e�i-

ciently? Exact computation is #P-complete (Valiant,

1979), so a polynomial-time algorithm is unlikely.

Based on random contractions, Karger (1999) gave

the first polynomial-time randomised approximation

algorithm (“FPRAS”) for Unreliability, namely for 1−
Pr[Gp is connected].

The first poly-time randomized approximation al-

gorithm (“FPRAS”) for Reliability, i.e., an algo-

rithm that computes w.h.p. an approximation of

Pr[Gp is connected] within multiplicative error factor

(1±ε) in time polynomial in the encoding size of in-

put G and in
1

ε
, was found by Guo and Jerrum (2018).

However it is based on a variant of the constructive

version of the Lovász Local Lemma (which we cover

later in the course).
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Expectation vs. Whp

There are two typical kinds of guarantees we will work with.

I Expectation. This includes the expected running time, expected

output, etc.

I With high probability (whp or w.h.p.). The meaning of this can

vary. Sometimes it means probability 1−o(1), which for example

would include 1 − 1

log n . Sometimes it is stronger, namely 1 − 1

nc .
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Reading

Our next topic will be a review of some discrete probability, and the “Coupon

Collector” problem.

I Some of you may have seen the “Coupon Collector” problem in lower

level classes.

I We will re-visit it, but as well as deriving the expected value, we will

also bound the variance (2nd moment), and look at the implications of

that.

I You might want to read sections 2.3, 2.4 and 3.3 of [MU] in advance (if

your probability is rusty, also read 2.1, 2.2, 3.1 and 3.2)
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