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Discrete Random Variables
A main focus for us in RA is on random variables, X , especially discrete ran-
dom variables, where X can take on a finite or countable number of values.

The expectation, E[X ], of a discrete random variable X can be defined as
E[X ] .=

∑
i i Pr[X = i] where the summation is over all values in the range

of X .
Not all random variables have a well-defined finite expectation. Expectation
is defined and finite if

∑
i |i| Pr[X = i] converges as a series; otherwise it is

called unbounded (or simply undefined).
(note that E[X ] cannot be unbounded unless it has infinite support).

Theorem (2.1, Linearity of Expectation)
For any finite collection of discrete random variables X1, . . . ,Xk with finite
expectations,

E

 k∑
j=1

Xj

 =

k∑
j=1

E[Xj].

Theorem 2.1 holds regardless of whether the random variables are indepen-
dent or not.
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Discrete Random Variables . . .

Lemma (2.2)
For any discrete random variable X, any constant c, E[c · X ] = c · E[X ].

Definition (2.2)
A collection X1, . . . ,Xk of random variables are said to be mutually inde-
pendent if for every subset I ⊆ {1, . . . , k}, and every tuple of values ai, i ∈ I,
we have

Pr [∩i∈I(Xi = ai)] =
∏
i∈I

Pr[Xi = ai].

They are called pairwise independent if
Pr[Xi = ai ∩ Xj = aj] = Pr[Xi = ai] · Pr[Xj = aj], ∀ values ai, aj and i, j ∈ I.

NOTE: mutual independence is stronger: a collection of random variables
can be pairwise independent but not mutually independent:

Example
Two fair coins, values 1 and 0. A “value of first flip”, B “value of second flip”,
C “absolute di�erence of two values”. Pairwise independence works out but
Pr[(A = 1) ∩ (B = 1) ∩ (C = 1)] = ?
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Variance and k-th moments
A “partner measure” to expectation (the “first moment”) is variance (or the
related measure called the second moment).

Definition
For any discrete random variable X , and integer k ≥ 1, the k-th moment is
defined as E[X k ], ie,

∑
i i

k Pr[X = i] (i ranging over the support of X ).
The variance is defined as E[(X − E[X ])2], ie,

∑
i(i − E[X ])2 Pr[X = i].

Lemma
For any discrete random variable X, E[X 2] ≥ E[X ]2.

Proof.
Define Y = (X − E[X ])2, Y is also a discrete random variable. Also Y only
takes non-negative values, hence E[Y ] ≥ 0. Moreover,

E[Y ] = E[X 2 − 2E[X ] · X + E[X ]2]
= E[X 2] − E[2E[X ] · X ] + E[X ]2 (Thm 2.1)

= E[X 2] − 2E[X ] · E[X ] + E[X ]2 (Lemma 2.2)

= E[X 2] − E[X ]2.

By E[Y ] ≥ 0, we have E[X 2] ≥ E[X ]2.
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An application of Linearity of Expectation
Consider a uniformly at random permutation, σ, of n elements. What is the
expected number of fixed points of σ (i.e., expected number of i ∈ {1, . . . , n}
such that σ(i) = i)?

Let Xi be the indicator variable of the event σ(i) = i. In other words:

Xi =

{
1 if σ(i) = i
0 otherwise

Let X =
∑n

i=1 Xi . Then

EXi = Pr[Xi = 1] =
(n− 1)!

n!
=

1
n
.

Thus, by linearity of expectation,

EX =

n∑
i=1

EXi =

n∑
i=1

1
n
= 1.
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Convex functions, and Jensen’s Inequality

Definition
A function f : R→ R is called convex if for all x1, x2 ∈ R and all λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

Equivalently, f is convex if for any k ≥ 2, for all x1, . . . , xk ∈ R, and all
λ1, . . . , λk ∈ [0, 1] such that

∑k
i=1 λi = 1

f (
k∑

i=1

λixi) ≤
k∑

i=1

λif (xi).

In other words, f applied to any convex combination of values is ≤ that
same convex combination applied to f applied to those values.
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Jensen’s Inequality

Theorem (2.4, Jensen’s Inequality)
If f : R → R is a convex function, and X is a random variable with finite
expectation, then

E[f (X)] ≥ f (E[X ]).

We will not provide a proof.

It is not di�icult to prove for discrete random variables.
Inuition: an “expectation” is nothing other than a “weighted average”, i.e.,
it is a “convex combination”.
(The book provides a proof, but only for di�erentiable f .)
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Simple distributions
Definition
The Bernoulli distribution (“biased coin-flip”) is given by a random variable Y
such that Y = 1 (“success”) with probability p and Y = 0 (“failure”) with
probability q = 1− p.

Notice E[Y ] = p when Y is Bernoulli.

Definition (2.5)
The binomial distribution, wri�en B(n, p), for integer n ≥ 1 and probability
p ∈ [0, 1], is given by a random variable X which takes values in {0, 1, . . . , n}
with the probabilities Pr[X = j] =

(n
j

)
pj(1− p)n−j.

Pr[X = j] is precisely the probability of j successes in n mutually indepen-
dent Bernoulli trials, each with probability of success p.

Claim: E[X ] = np for a binomially distributed B(n, p) random variable X .

Proof.
Note that we can write X =

∑n
i=1 Xi , where Xi is the Bernoulli random

variable representing the i’th Bernoulli trial. Then by linearity of
expectation E[X ] =

∑n
i=1 E[Xi] =

∑n
i=1 p = np. 2

(Note that we didn’t even use independence of the di�erent Bernoulli
trials for this‼) RA – Lecture 4 – slide 8



Conditional Expectation

Definition (2.6)
For two random variables X ,Y ,

E[X | Y = y] =
∑
x

x · Pr[X = x | Y = y],

the summation being taken over all x in the support of X , and we asssume
y is in the support of Y for this to be well-defined.

Definition (2.7)
We use E[X | Y ], where X ,Y are random variables. to denote a new random
variable, a function of Y , which takes on the value E[X | Y = y] whenever
event [Y = y] holds.
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Conditional Expectation

Observation
For any finite collection of discrete random variables X1, . . . ,Xn with finite
expectations, and for any random variable Y , and value y in the support of Y ,

E

[(
n∑

i=1

Xi

)
| Y = y

]
=

n∑
i=1

E[Xi | Y = y].

Lemma (2.5)
For any random variables X and Y, such that E[X | Y = y] is always bounded

E[E[X | Y ]] = E[X ].
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Conditional Expectation

Proof.

E[E[X | Y ]] =
∑
y

Pr[Y = y]E[X | Y = y]

=
∑
y

Pr[Y = y]
∑
x

x Pr[X = x | Y = y]

=
∑
y

∑
x

x Pr[Y = y] Pr[X = x | Y = y]

=
∑
y

∑
x

x Pr[X = x ∩ Y = y]

=
∑
x

∑
y

x Pr[X = x ∩ Y = y]

=
∑
x

x Pr[X = x] = E[X ].

RA – Lecture 4 – slide 11



Geometric distributions
Imagine we flip a biased coin many times (success with prob. p), and stop
when we see the first success (heads, or alternatively 1). What is the distri-
bution of the number of flips?

Definition (2.8)
A geometrically distributed random variable X with parameter p ∈ (0, 1) has
the following probability distribution on Z+ = {1, 2, 3, . . .}:

Pr[X = j] = (1− p)j−1p.

Let’s confirm that this does indeed define a probability distribution on Z+:∑∞
j=1 Pr[X = j] =

∑∞
j=1(1− p)j−1p = p

∑∞
j=0(1− p)j = p( 1p ) = 1.

Lemma (2.8)
For a geometric random variable X with parameter p, and for any j > 0, k ≥ 0,

Pr[X = j + k | X > k] = Pr[X = j].
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Geometric distributions

Lemma (2.9)
For any discrete random variable X that only takes non-negative integer values:

E[X ] =

∞∑
i=1

Pr[X ≥ i].

Proof.∑∞
i=1 Pr[X ≥ i] =

∑∞
i=1

∑∞
j=i Pr[X = j] =

∑∞
j=1

∑j
i=1 Pr[X = j] =∑∞

j=1 j Pr[X = j] = E[X ].

Observation
If X is a geometric random variable X with parameter p, then for any i ≥ 1,
Pr[X ≥ i] = (1− p)i−1.

Proof.
The event that X ≥ i is exactly the event that the first (i − 1) trials all fail.
(You can also directly calculate it.)
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Geometric distributions

Lemma
For a geometric random variable X with parameter p, E[X ] = 1

p .

Proof.
By Lemma 2.9, we have E[X ] =

∑∞
i=1 Pr[X ≥ i]. Thus

E[X ] =
∞∑
i=1

(1− p)i−1 =

∞∑
i=0

(1− p)i

=
1

1− (1− p)
=

1
p
.
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Coupon Collector Problem

“Coupon collecting”: suppose that when you buy a Kellogg’s
cornflakes cereal box, each box contains a “coupon” inside, e.g., an
action hero card. Suppose there are n di�erent types of “coupons”,
i.e., n di�erent action hero cards, and each box contains a card cho-
sen independently and uniformly at random from the n possibilities.

Suppose your goal is to collect at least one of each action hero card,
a�er which you will stop buying.

What is the (expected) number of packets you need to buy to com-
plete your collection of all n cards?

I Note that when buying a box the probability it contains any particular
card inside is 1/n.
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Coupon Collector Analysis

I Let X be a random variable denoting the total number of boxes bought
to get all n cards.

I For each i = 1, . . . , n, let Xi be a random variable denoting the number
of boxes bought while already having exactly i− 1 di�erent cards, and
just until you get the ith di�erent card.

I Clearly X =
∑n

i=1 Xi .
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Coupon Collector Analysis

Key observation: Xi is also a geometrically distributed random variable: if
we already own i−1 di�erent cards, when we buy a box the probability that
we get a new card is pi = 1− i−1

n = n−i+1
n .

Hence Xi is a geometric r.v. with parameter pi .
Thus, E[Xi] =

1
pi
= n

n−i+1 .

By linearity of expectation, E[X ] =
∑n

i=1 E[Xi] =
∑n

i=1
n

n−(i−1) = n
∑n

i=1
1
i .

Fact: For all n ≥ 1, the “Harmonic number”, H(n) =
∑n

i=1
1
i , satisfies

ln(n) + 1
2 ≤ H(n) ≤ ln(n) + 1.

So, the expected number E[X ] of boxes needed to collect all n cards, is
n ln(n) +Θ(n), or more specifically n ln(n) + n

2 ≤ E[X ] ≤ n ln(n) + n.
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Is “expected” the same as “typical”?

All we know (for Coupon collecting) is the “average” (weighted over random
choices) number of cards.

We don’t (yet) know how likely one “run” of the process is to come close to
that expected value.

“Concentration inequalities” help us bound the deviation from the mean.
Next time, we start talking about such inequalities:

I Markov’s Inequality;

I Chebyshev’s Inequality;

I Cherno� Bound / Hoe�ding inequality.
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