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Continuing review of Discrete Probability . . .
and the Coupon Collector Problem

Recall: “Coupon collecting”: we are buying boxes (of cereal), each of
which has a uniformly random coupon inside. There are n di�erent
types of coupons, and the goal is to collect one of each type, and
then stop buying.

Last time we showed the expected number E[X ] of boxes we must buy is
nH(n) = n ln(n) + θ(n), or more precisely,
n ln(n) + n

2 ≤ nH(n) ≤ n ln(n) + n.

Today we examine what the probability is that a “run” of the purchasing
process is far from that expectation.

Concentration inequalities will be vital:

I Markov Inequality;

I Chebyshev Inequality;

I Cherno� Bound / Hoe�ding inequality.

RA – Lecture 5 – slide 2



Markov Inequality
Very simple and easy, but very important.

Theorem (3.1, Markov Inequality)
Let X be any random variable that takes only non-negative values. Then for
any a > 0,

Pr[X ≥ a] ≤ E[X ]
a
.

Proof.
Define the indicator function I = I(X) by

I(x) =

{
0 x < a;

1 x ≥ a.
;

Then X ≥ a · I(X), and hence I(X) ≤ X
a .

Taking expectation of both sides, and using E[I] = Pr[X ≥ a], we have

E[I] = Pr[X ≥ a] ≤ E[X ]
a

.
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Bounding Coupon Collector purchases - Markov

Let X be the number of purchases we have to make in the coupon collector
problem until we get all n coupons. Recall, we know E[X ] = nHn, and thus:
n ln(n) + n

2 ≤ E[X ] ≤ n ln n+ n.

Suppose we want a lower bound t on the number of boxes we have to buy,
such that Pr[X ≥ t] ≤ 1

2 .

By Markov’s inequality, Pr[X ≥ t] ≤ E[X]
t ≤

nHn
t .

Thus, it su�ices to let t = 2nHn, to get Pr[X ≥ 2nHn] ≤ 1
2 .

So, Pr[X ≥ 2(n ln(n) + n)] ≤ 1
2 .

However, this bound is way too weak: we can get far smaller probability of
failure with 2nHn purchases.

The power ofMarkov ineq. is that it does not require any other knowledge of
the random variable. However for specific problems, we can o�en do much
be�er.

For example, we can bound the variance.
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Variance and Covariance
Recall, the variance of a random variable is

Var[X ] := E[(X − E[X ])2] = E[X 2] − E[X ]2.

Definition (3.3)
The covariance of two random variables X and Y is defined as

Cov[X ,Y ] .= E [(X − E[X ])(Y − E[Y ])] = E[XY ] − E[X ]E[Y ] .

Theorem (3.2)
For any two random variables X ,Y, we have

Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov[X ,Y ].

Proof.
Var[X + Y ] = E[(X + Y)2] − E[X + Y ]2

= E[X 2] + E[Y 2] + 2E[XY ] − E[X ]2 − E[Y ]2 − 2E[X ]E[Y ]
= Var[X ] + Var[Y ] + 2(E[XY ] − E[X ]E[Y ]).
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(pairwise) Independent Random Variables

Theorem (3.3)
If X ,Y are a pair of independent random variables, then

E[XY ] = E[X ] · E[Y ].

Corollary (3.4)
If X ,Y are a pair of independent random variables, then

Cov[X ,Y ] = 0

and
Var[X + Y ] = Var[X ] + Var[Y ].
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Chebyshev Inequality

Theorem (3.2, Chebyshev Inequality)
For every a > 0,

Pr[|X − E[X ]| ≥ a] ≤ Var[X ]
a2

.

Proof.
First note that for any a > 0,

|X − E[X ]| ≥ a ⇐⇒ (X − E[X ])2 ≥ a2

Apply Markov’s Inequality to the random variable (X − E[X ])2. We get:

Pr[|X − E[X ]| ≥ a] = Pr[(X − E[X ])2 ≥ a2] ≤ E[(X − E[X ])2]
a2

=
Var[X ]
a2

.
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Bounding Coupon Collector purchases - Markov

Recall that X is the number of purchases of the coupon collector problem
and E[X ] = nHn ≤ n ln n+ n.

Using Markov’s inequality, we can get that Pr[X ≥ n2Hn] ≤ 1
n .

We can do be�er with Chebyshev’s inequality . . .
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Bounding Coupon Collector purchases - Chebyshev

Pr[|X − E[X ]| ≥ a] ≤ Var[X ]
a2

.

I Need to evaluate Var[X ], which is Var[X1 + . . .+ Xn].

Recall that Xi is the number of boxes bought to get the i-th new card.

I Corollary 3.4: for independent Y ,Z , Var[Y + Z ] = Var[Y ] + Var[Z ].

I Are these Xi’s independent? Yes. Xi is a geometrically distributed r.v.
that only depends on the values n and i (and not on what cards we
have collected or how long it took to collect them).

I Hence the random variables X1, . . . ,Xn are all mutually independent,
and

Var[X ] = Var[X1] + Var[X2] + . . .+ Var[Xn].
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Bounding Coupon Collector purchases - Chebyshev
Each Xi is a geometric random variable with parameter p = n−(i−1)

n .

Fact (3.8)
For any geometric random variable X with parameter p,

E[X ] = p−1, and Var[X ] = 1−p
p2 .

(These facts are well known. See chapter 3 of book for a proof.)

Pr[|X − E[X ]| ≥ a] ≤ Var[X ]
a2

=

∑n
j=1 Var[Xj]

a2
.

Each individual Xj is geometric with parameter n−(j−1)
n , so each Xj has

Var[Xj] =
j − 1
n

(
n

(n+ 1− j)

)2

≤
(

n
n+ 1− j

)2

.

Var[X ] ≤ n2
n∑

j=1

(
1

n+ 1− j

)2

= n2
n∑

j=1

(
1
j

)2
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Bounding Coupon Collector purchases - Chebyshev
Theorem [Euler,1741] ∞∑

i=1

1
i2

=
π2

6
Hence,

Var[X ] ≤ n2
n∑

j=1

1
j2
≤ n2π2

6
.

Suppose we are willing to make 2E[X ] = 2nHn purchases. The probability
we fail to get all cards is

Pr[X > 2E[X ]] = Pr[X − E[X ] > E[X ]]
= Pr[|X − E[X ]| > E[X ]]. (as X ≥ 0)

Using Chebyshev Inequality with a = E[X ]:

Pr[|X − E[X ]| ≥ E[X ]] ≤ Var[X ]
E[X ]2

≤ π2n2

6n2H2
n

=
π2

6H2
n
≤ 2

ln2 n
.

Note: This improves over 1
2 , which is what Markov gives us.
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Bounding Coupon Collector purchases - Union bound

Theorem (1.2, Union bound)
Let E1, E2, . . . be a finite or countably infinite sequence of events. Then

Pr

⋃
i≥1

Ei

 ≤∑
i≥1

Pr[Ei].

Similar to Markov ineq., there is almost no requirement to the union
bound!
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Bounding Coupon Collector purchases - Union bound

Let Ei be the “bad” event where card i is still missing at time T .

Pr [Ei] ≤
(
1−

1
n

)T

.

Thus, by a union bound,

Pr[X ≥ T ] = Pr
[
∪ni≥1Ei

]
≤ n

(
1−

1
n

)T

.
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Bounding Coupon Collector purchases - Union bound

Once again we use (1− 1/n)n ≤ 1/e. If T = (1+ ε)n ln n,

n
(
1−

1
n

)T

≤ n
((

1−
1
n

)n)(1+ε) ln n

≤ n(e−1)(1+ε) ln n = n−ε.

Thus, for example if ε = 1,

Pr[X ≥ 2n ln n] ≤ n−1.

As E[X ] ≥ n ln n,

Pr[X ≥ 2E[X ]] ≤ Pr[X ≥ 2n ln n] ≤ n−1.
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Coupon collector bounds

Pr[X ≥ 2E[X ]] ≤ 1
2

(Markov)

Pr[X ≥ 2E[X ]] ≤ 2
ln(n)2

(Chebyshev)

Pr[X ≥ 2E[X ]] ≤ 1
n

(Union bound)

Using “Cherno� bounds” for “negatively correlated” r.v.’s, one can also show

Pr[X ≤ (1− ε)(n− 1) ln n] ≤ e−nε .

However, we will not establish this result in this course.
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Wrapping up today

Next week we will continue the theme of “bounding deviation from the
mean” by introducing some very important concentration inequalities, which
apply first and foremost to sums of independent random variables, called

Cherno� bounds / Hoe�ding’s inequality.

First, in the next lecture we give a simple randomized algorithm to approxi-
mate theMaximum Cut in a graph, and show how to derandomize it using
conditional expectation.
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