
Randomized Algorithms

Lecture 6

Kousha Etessami

RA – Lecture 6 – slide 1

Max-Cut

Recall: for an undirected graph G = (V , E), a cut is a partition of V into

two non-empty sets, (S,V \ S). The capacity of the cut (S,V \ S) is the total
number |CS | of edges that cross the cut, where

CS = {{u, v} ∈ E | u ∈ S, & v ∈ V \ S}

A maximum cut in G is a cut with maximum capacity.

The Max-Cut problem: given G, find a maximum cut.

This is a classic NP-hard problem.

Indeed, it is NP-complete to decide, given G and k, whether the size of the

max-cut is ≥ k. ([Karp,1972])

So we believe there is no polynomial-time algorithm to compute this exactly.

�estion: How about approximating a max-cut? Can we do so e�iciently?

For example, can we get within factor
1

2
of a max cut in polynomial time?

We will next show, using a trivial randomized algorithm, that every graph

G = (V , E) has a cut of size at least |E |/2, which can be found e�iciently.

RA – Lecture 6 – slide 2

Max-Cut: random partitioning

Consider the following trivial random partition algorithm:

Algorithm RandomCut(G = (V , E))

1. S ← ∅
2. for every v ∈ V do
3. Flip an (independent) fair coin, Xv .

4. if (Xv = “Heads”) then
5. S ← S ∪ {v}

6. return S, V \ S

�estion: What is the expected size of CS?

RA – Lecture 6 – slide 3

Max-Cut: analyzing random partitioning

Theorem (6.3)

Let (S,V \ S) be the output of RandomCut. Then E[|CS |] =
|E|

2
.

Proof.

Consider the random S created by RandomCut.

For each edge e = {u, v} ∈ E , let Ie be the indicator variable of whether e is

in CS or not. There are 4 possibilities for each e = {u, v} ∈ E :

(a) u, v ∈ S; (b) u ∈ S, v 6∈ S; (c) u 6∈ S, v ∈ S; (d) u, v 6∈ S.

Note: in exactly 2 out of the 4 cases (namely, (b) an (c)) we have e ∈ CS .

Thus, E[Ie] = Pr[e ∈ CS] =
1

2
.

Note that |CS | =
∑

e∈E Ie. Hence, summing over all e ∈ E , and by linearity

of expectation,

E[|CS |] =
∑
e∈E

E[Ie] =
|E |

2

.

RA – Lecture 6 – slide 4

Max-Cut: analyzing the random partition algorithm

Corollary

For any graph G = (V , E), there exists some cut (S,V \ S) such that

|CS | ≥ |E |/2.

Proof.

Basic but useful observation: If the expected size of CS is |E |/2, then there

certainly must exist at least one cut of at least that size.

RA – Lecture 6 – slide 5

The probabilistic method

I The proof that every graph has a cut of cardinality ≥ |E |/2 is a very

very simple example of the probabilistic method.

I With the probabilistic method, we use randomness and the laws of

probability/expectation to prove that a certain combinatorial object

must exist.

RA – Lecture 6 – slide 6

The probabilistic method

The (basic) probabilistic method:

I Draw a random object from a set of candidate objectsΩ;

I Prove that the probability that the random object satisfies a certain

property is strictly positive;

I Therefore, an object satisfying that property must exist!

This is a non-constructive method of proving the existence of combinatorial

objects, pioneered by Paul Erdős.

Although this approach uses probability, the result (that some object with

the property exists) is a definite fact, not a probabilistic statement.

Although it only tells us that some object satisfying some desired property

exist, in many cases we can also find / construct the object e�iciently.

More on the Probabilistic Method later in the course.

RA – Lecture 6 – slide 7

De-randomization

I Wedid not analyse the probability that RandomCut gives a good

(high cardinality) cut, and are not going to do that.

I Instead, we will in fact de-randomize the algorithm using condi-

tional expectation, to obtain a deterministic algorithm that al-

ways produces a cut with capacity at least
|E |
2
.

RA – Lecture 6 – slide 8

De-randomization

We derandomize via “conditional expectation”.

We are interested in the value of |CS |, and the (conditional) expected value

of this quantity will change throughout the algorithm, as vertices get added

to S or S.

Our randomized algorithm considered the vertices in fixed order. Let X1, . . .,
Xn be the indicator random variables (Xi = 1 means that vi is added to S,

whereas Xi = 0 means vi is added to S).

Our deterministic derandomized algorithm will construct a specific cut (de-

fined inductively by assigning values x1, . . . , xn to X1, . . ., Xn) of size ≥ |E|

2
,

by making decisions for the vertices sequentially one-by-one. At each step

we will ensure we choose xk+1 so that

E[|CS | | X1 = x1, . . . ,Xk+1 = xk+1] ≥ E[|CS | | X1 = x1, . . . ,Xk = xk].

RA – Lecture 6 – slide 9

Derandomization cont’d.

Suppose V = {v1, . . . , vn}, and suppose we have considered vertices v1, . . . ,
vk sequentially so far, and we have taken decisions x1, . . ., xk for these ver-
tices.

Suppose (the induction hypothesis) we know that

E[|CS | | X1 = x1, . . . ,Xk = xk] ≥ E[|CS |].

Think about the (random) process of adding vk+1. There are two choices

for xk+1, of equal probability. Hence,

E[|CS | | X1 = x1, . . . ,Xk = xk] =
E[|CS | | X1 = x1, . . . ,Xk = xk ,Xk+1 = 1]

2

+
E[|CS | | X1 = x1, . . . ,Xk = xk ,Xk+1 = 0]

2

.

Hence, one of the two conditional expectations on the right hand side must

be ≥ E[|CS | | X1 = x1, . . . ,Xk = xk], which (by induction) is ≥ E[|CS |] =
|E|

2
.

RA – Lecture 6 – slide 10

Derandomization cont’d.

In our de-randomized algorithm, how do we decide the value of Xk+1?

For i ∈ {0, 1}, we want to compute the conditional expectations

Zi := E[|CS | | X1 = x1, . . . ,Xk+1 = i].

Recall the linearity of conditional expectation, and |CS | =
∑

e∈E Ie. Hence,

we just need to compute

Zi,e := E[Ie | X1 = x1, . . . ,Xk+1 = i]

for each e ∈ E , and then note that Zi =
∑

e∈E Zi,e.

RA – Lecture 6 – slide 11

Derandomization cont’d.

Zi,e = E[Ie | X1 = x1, . . . ,Xk+1 = i]

There are three possibilities of the two endpoints of e:

I Both have been determined — the conditional expectation is 0 or 1;

I One of them is determined — the conditional expectation is 1/2;

I None of them is determined — the conditional expectation is 1/2.

Moreover, these values are easy to compute.

Thus we can compute Zi,e for each e, and sum them up to compute the

desired Zi .

Then we compare Z0 and Z1, and choose the larger of the two.

RA – Lecture 6 – slide 12

Derandomization cont’d.

To decide the value ofXk+1, all we care actually is whether or notZ1−Z0 ≥ 0.

In particular, we will let xk+1 := 1 (respectively xk+1 := 0) precisely when

Z1 − Z0 ≥ 0 (respectively, Z1 − Z0 < 0). Note that

Z1 − Z0 =
∑
e∈E

Z1,e − Z0,e.

Back to the possibilities for e:

I If neither endpoints of e is vk+1, Z1,e = Z0,e;

I If one endpoint of e is vk+1 and the other end is not determined, then

Z1,e = Z0,e =
1

2
.

I If one endpoint of e is vk+1 and the other end is determined, thenZ1,e 6=
Z0,e.

Thus we only need to care about the last case.

RA – Lecture 6 – slide 13

Derandomization cont’d.

For i = 0, 1, let Ai := {vj | j ∈ [k], Xj = i, {vj, vk+1} ∈ E}.

Namely A1 (respectively A0) is the set of neighbours of vk+1 from among the

already determined nodes {v1, . . . , vk} that are in S (respectively, in S).

Each vertex in A1 contributes 1 to Z0,

and each vertex in A0 contributes 1 to Z1.

Thus, Z1 − Z0 = |A0|− |A1|.

RA – Lecture 6 – slide 14

So, what is the de-randomized algorithm?

Algorithm: starting from the first vertex to the last, assign the current vertex

to S or to S so as to maximize the current cut value.

This amounts to just the following simple “greedy” algorithm: consider the

vertices in some specific order v1, . . . , vn. Add v1 to S (arbitrarily). Then,

successively, add the next vertex vi to the side which has fewer of its neigh-

bors (resulting in the larger addition to the size of the cut), breaking ties

arbitrarily.

The greedy algorithm is guaranteed to yield a cut at least as large and the

expected size of a random cut, which is
|E|

2
.

Hence, we can e�iciently (and deterministically)
1

2
-approximate a MaxCut.

�estion: Can we do be�er than factor
1

2
?

RA – Lecture 6 – slide 15

So, what is the de-randomized algorithm?

Algorithm: starting from the first vertex to the last, assign the current vertex

to S or to S so as to maximize the current cut value.

This amounts to just the following simple “greedy” algorithm: consider the

vertices in some specific order v1, . . . , vn. Add v1 to S (arbitrarily). Then,

successively, add the next vertex vi to the side which has fewer of its neigh-

bors (resulting in the larger addition to the size of the cut), breaking ties

arbitrarily.

The greedy algorithm is guaranteed to yield a cut at least as large and the

expected size of a random cut, which is
|E|

2
.

Hence, we can e�iciently (and deterministically)
1

2
-approximate a MaxCut.

�estion: Can we do be�er than factor
1

2
?

RA – Lecture 6 – slide 15

So, what is the de-randomized algorithm?

Algorithm: starting from the first vertex to the last, assign the current vertex

to S or to S so as to maximize the current cut value.

This amounts to just the following simple “greedy” algorithm: consider the

vertices in some specific order v1, . . . , vn. Add v1 to S (arbitrarily). Then,

successively, add the next vertex vi to the side which has fewer of its neigh-

bors (resulting in the larger addition to the size of the cut), breaking ties

arbitrarily.

The greedy algorithm is guaranteed to yield a cut at least as large and the

expected size of a random cut, which is
|E|

2
.

Hence, we can e�iciently (and deterministically)
1

2
-approximate a MaxCut.

�estion: Can we do be�er than factor
1

2
?

RA – Lecture 6 – slide 15

Max-Cut: the Goemans-Williamson algorithm

In fact, there is a (randomized) polynomial-time algorithm forMax-Cutwith

a be�er than
1

2
-approximation ratio.

In a breakthrough result, Goemans and Williamson (1995) gave a Max-Cut

algorithm with approximation ratio ≈ 0.87856.
Improving upon this ratio would disprove a major conjecture in computa-

tional complexity: either the P 6= NP conjecture, or the “Unique Games

Conjecture” ([Khot’02]) which asserts NP-hardness of a certain problem.

Max-Cut is equivalent to the following quadratic integer program:

MaxCut(G) = max :
1

2

∑
{u,v}∈E

1− xuxv

Subject to: xv ∈ {+1,−1}, ∀v ∈ V .

We cannot solve this e�iciently. Instead, we can solve the following

Semidefinite Programming relaxation:

MaxCutR(G) = max :
1

2

∑
{u,v}∈E

1− 〈~xu,~xv〉

Subject to: ~xv ∈ Rn & ‖~xv‖2 = 1, ∀v ∈ V .

RA – Lecture 6 – slide 16

Max-Cut: the Goemans-Williamson algorithm

In fact, there is a (randomized) polynomial-time algorithm forMax-Cutwith

a be�er than
1

2
-approximation ratio.

In a breakthrough result, Goemans and Williamson (1995) gave a Max-Cut

algorithm with approximation ratio ≈ 0.87856.
Improving upon this ratio would disprove a major conjecture in computa-

tional complexity: either the P 6= NP conjecture, or the “Unique Games

Conjecture” ([Khot’02]) which asserts NP-hardness of a certain problem.

Max-Cut is equivalent to the following quadratic integer program:

MaxCut(G) = max :
1

2

∑
{u,v}∈E

1− xuxv

Subject to: xv ∈ {+1,−1}, ∀v ∈ V .

We cannot solve this e�iciently. Instead, we can solve the following

Semidefinite Programming relaxation:

MaxCutR(G) = max :
1

2

∑
{u,v}∈E

1− 〈~xu,~xv〉

Subject to: ~xv ∈ Rn & ‖~xv‖2 = 1, ∀v ∈ V .

RA – Lecture 6 – slide 16

Max-Cut: the Goemans-Williamson algorithm

In fact, there is a (randomized) polynomial-time algorithm forMax-Cutwith

a be�er than
1

2
-approximation ratio.

In a breakthrough result, Goemans and Williamson (1995) gave a Max-Cut

algorithm with approximation ratio ≈ 0.87856.
Improving upon this ratio would disprove a major conjecture in computa-

tional complexity: either the P 6= NP conjecture, or the “Unique Games

Conjecture” ([Khot’02]) which asserts NP-hardness of a certain problem.

Max-Cut is equivalent to the following quadratic integer program:

MaxCut(G) = max :
1

2

∑
{u,v}∈E

1− xuxv

Subject to: xv ∈ {+1,−1}, ∀v ∈ V .

We cannot solve this e�iciently. Instead, we can solve the following

Semidefinite Programming relaxation:

MaxCutR(G) = max :
1

2

∑
{u,v}∈E

1− 〈~xu,~xv〉

Subject to: ~xv ∈ Rn & ‖~xv‖2 = 1, ∀v ∈ V .

RA – Lecture 6 – slide 16

Goemans-Williamson algorithm

For G = (V , E), with |V | = n, solving

MaxCutR(G) = max :
1

2

∑
{u,v}∈E

1− 〈~xu,~xv〉

Subject to: ~xv ∈ Rn & ‖~xv‖2 = 1, ∀v ∈ V .

gives us a collection of n vectors, ~xv , v ∈ V , on the unit sphere in Rn
.

�estion: How do we extract an approximately optimal {+1,−1} solution

x toMaxCut(G), from a solution to MaxCutR(G)?

Answer: We do a kind of “randomized rounding” of the vector solution.

Specifically, choose a “random vector”,~r ∈ Rn
, and set

xv := +1 if 〈~xv ,~r〉 ≥ 0, and otherwise, set xv := −1.

Equivalently: r describes a random hyperplane, H, through the origin that

cuts the unit sphere in half, defining a partition of the vertices (via the par-

tition defined by H of the unit vectors associated with vertices).

It can be shown that the approximation ratio of this algorithm is at least:

2

π
· min
0≤θ≤π

θ

(1− cos θ)
≈ 0.87856 .

RA – Lecture 6 – slide 17

Goemans-Williamson algorithm

For G = (V , E), with |V | = n, solving

MaxCutR(G) = max :
1

2

∑
{u,v}∈E

1− 〈~xu,~xv〉

Subject to: ~xv ∈ Rn & ‖~xv‖2 = 1, ∀v ∈ V .

gives us a collection of n vectors, ~xv , v ∈ V , on the unit sphere in Rn
.

�estion: How do we extract an approximately optimal {+1,−1} solution

x toMaxCut(G), from a solution to MaxCutR(G)?
Answer: We do a kind of “randomized rounding” of the vector solution.

Specifically, choose a “random vector”,~r ∈ Rn
, and set

xv := +1 if 〈~xv ,~r〉 ≥ 0, and otherwise, set xv := −1.

Equivalently: r describes a random hyperplane, H, through the origin that

cuts the unit sphere in half, defining a partition of the vertices (via the par-

tition defined by H of the unit vectors associated with vertices).

It can be shown that the approximation ratio of this algorithm is at least:

2

π
· min
0≤θ≤π

θ

(1− cos θ)
≈ 0.87856 .

RA – Lecture 6 – slide 17

References and reading

The
1

2
-approximation algorithm for MaxCut is covered in Sections 6.2, 6.3

of the book.

The book does not cover the Goemans-Williamson algorithm, and we will

not expect you to know the Goemans-Williamson algorithm for the exam.

(The G-W algorithm has also been derandomized, using a more involved ap-

plication of themethod of conditional expectations ([Mahajan-Ramesh,1995]).)

If you want to learn more about these and other approximation algorithms

for NP-hard problems, two very nice books on the subject are:

V. Vazirani, Approximation Algorithms, Springer, 2001.

D. P. Williamson and D. B. Shmoys, The Design of Approximation

Algorithms, Cambridge University Press, 2011.

We will return to the probabilistic method, and derandomization, later in

the lectures.

We will cover Cherno� Bounds next. It’s a good idea to start reading the

early sections of Chapter 4.

RA – Lecture 6 – slide 18

