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Bounding the probability of deviations from expectation

We have already seen . . .

Theorem (3.1, Markov’s Inequality)
Let X be any random variable that takes only non-negative values. Then for
any a > 0,

Pr[X ≥ a] ≤ E[X ]
a
.

Theorem (3.2, Chebyshev’s Inequality)
For every a > 0,

Pr[|X − E[X ]| ≥ a] ≤ Var[X ]
a2

.

These are generic. Cherno�/Hoe�ding bounds give specific, much tighter,
bounds for sums of independent random variables and related distributions.
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Cherno� Bounds – a first look, and applications

To gain intuition, we first state and use a couple of specific Cherno� bounds.

Theorem (Two special cases of Cherno� bounds)
Suppose we conduct a sequence of n mutually independent Bernoulli trials,
Xi ∈ {0, 1}, with probability p of “success” (i.e., ge�ing a 1, i.e., heads) in each
trial. Let X =

∑n
i=1 Xi be the binomially distributed r.v. that counts the total

number of successes (recall that E[X ] = pn). Then:

1. For all ε > 0 , Pr(|X − E[X ]| ≥ εn) ≤ 2e−2nε2
.

2. For all R ≥ 6E[X ], Pr(X ≥ R) ≤ 2−R.
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First simple application of Cherno� bounds

�estion: A biased coin is flipped 200 times consecutively, and comes up
heads with probability 1/10 each time it is flipped. Give an upper bound on
the probability that it will come up heads at least 120 times.

Solution: Let X be the r.v. that counts the number of heads. Recall:
E[X ] = pn = (1/10) · 200 = 20. By the given Cherno� bound (2.),

Pr[X ≥ 120] = Pr[X ≥ 6E[X ]] ≤ 2−6E[X] = 2−(6·20) = 2−120.

Note: By using Markov’s inequality, we are only able to determine that
Pr[X ≥ 120] ≤ E[X]

120 = 20
120 = 1

6 .

But by using Cherno� bounds, which are specifically geared for large de-
viation bounds for binomial and other distributions which arise as sums of
independent r.v.’s, we get that Pr[X ≥ 120] ≤ 2−120.

This is a vastly be�er upper bound‼
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A simple but fundamental application of Cherno� bounds

One of themost basic tasks in statistics: learning a distribution
Suppose you are given a biased coin, which lands heads with proba-
bility p each time it is flipped. But you are not told what p is. You
want to learn an estimate of what p is from samples.
This is the parameter estimation problem.

To estimate p, you can of course flip the coin n times, count the num-
ber of times, X , that it lands heads, and give the estimate:

“p is roughly X
n .”

But how big does n have to be for your estimate X
n to (probably) be

“good”?

Concretely, how many independent random samples (coin
flips), n, do you need in order to be sure that, say:

Pr[|
X
n
− p| >

1
30

] ≤ 1
25

?

Note that Pr[|Xn − p| > 1
30 ] = Pr[|X − pn| > 1

30n].

So we can use Cherno� bound (1.) to bound n.
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�estion: Howmany random samples n do I need tomake sure that:

Pr[|X − pn| >
1
30

n] ≤ 1
25

?

Solution: Let X be the r.v. that counts the number of heads from n
coin flips. Recall that E[X ] = pn.
By Cherno� bound (1.), Pr[|X − pn| ≥ εn] ≤ 2e−2nε2 .
Let ε = 1

30 , and let n = 1800, then

Pr[|X − pn| ≥ 1
30n] ≤ 2e−2·1800·( 1

30 )
2
= 2e−4 = 0.0366 ≤ 0.04 = 1

25 .

Thus, 1800 random samples (i.e., coin flips) su�ice to make sure that,
with probability at least 24

25 , your estimate X
n for the coin’s bias p is

correct to within additive error at most 1
30 .

These kinds of bounds are crucial in statistical analysis.
(For things like “confidence intervals” , etc.)
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Recall the Central Limit Theorem
One of the most fundamental theorems in all of probability and statistics.
Let X1, . . . ,Xn be independent identically distributed (i.i.d.) r.v.’s, with
E[Xi] = µi andVar[Xi] = σ

2
i > 0, where µi = µj and σi = σj , for all i, j ∈ [n].

Let X =
∑n

i=1 Xi , µ = E[X ] = nµi and σ2 = Var[X ] = nσ2i . The Central
Limit Theorem tells us what the distribution of X looks like in the limit as
n→∞.

Theorem (Central Limit Theorem)
As n → ∞, the distribution of X−µ

σ approaches the standard normal (Gaus-
sian) distribution N(0, 1). Thus, for any fixed β > 0,

lim
n→∞ Pr[|X − µ| > βσ] =

1√
2π

∫∞
β

e−t2/2dt
(
≈≈ 1√

2πβ
e−β

2/2
)

However: this theorem is only a statement about the limit behavior, and
says nothing about the rate of convergence, nor behavior for particular n.
Also, it describes probability of deviating by a factor β times the standard
deviation σ of X , not the probability of arbitrary deviations.

(credit: A. Sinclair’s lecture notes )
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Humble origins: framework for proving Cherno� bounds
Proving Cherno� bounds starts by simply applying Markov’s inequality to
an exponential of the sum X = X1 + . . . + Xn of independent r.v.’s. For any
t > 0:

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]
eta

.

( E[etX ] is known as the “moment generating function” of the r.v. X .
It is also used commonly in proofs of the central limit theorem.)

Hence,

Pr[X ≥ a] ≤ inf
t>0

E[etX ]
eta

Similarly, for t < 0, we have:

Pr[X ≤ a] = Pr[etX ≥ eta] ≤ E[etX ]
eta

.

Hence

Pr[X ≤ a] ≤ inf
t<0

E[etX ]
eta

Cherno� bounds are obtained by suitably choosing t , depending on context.
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Cherno� bounds — upper tail

Poisson trials - sequence of Bernoulli variables Xi with varying pi’s.

Theorem (4.4, basic form)
Let X1, . . . ,Xn be independent Bernoulli random variables with parameter pi
for i ∈ [n].Let X =

∑n
i=1 Xi , and µ = E[X ] =

∑n
i=1 pi . Then for any δ > 0,

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)1+δ

)µ
.

For example, if E[X ] = µ = pn, and δ = 1, and p = 1/4, then

Pr[X ≥ 2µ] ≤
( e
4

)pn
= (0.67958)pn = (0.67958)n/4 ≤ 2−(n/8)
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Comparing with Chebyshev’s inequality

Theorem (4.4, basic Cherno�)
Pr[X ≥ (1+ δ)µ] ≤

(
eδ

(1+δ)(1+δ)

)µ
.

Consider the case where pi = p and µ = pn. Var[Xi] = p − p2, and due to
independence Var[X ] = (p−p2)n = µ(1−p). With Chebyshev’s inequality

Pr[X ≥ (1+ δ)µ] ≤ Pr[|X − µ| ≥ δµ]

≤ µ(1− p)
δ2µ2

=
1− p
δ2µ

=
1− p
δ2pn

= O(1/n).

Thus, Chebyshev gives an inverse polynomial tail whereas Cherno� gives
us an exponential tail.
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Cherno� bounds — upper tail
Lemma
Let X1, . . . , Xn and X be the same as before and µ = E[X ]. For any t ∈ R,

E[etX ] ≤ eµ(e
t−1).

Proof.
Consider

E[etX ] = E
[
et(

∑n
i=1 Xi)

]
= E

[
n∏

i=1

etXi
]
.

The Xi and hence the etXi are mutually independent, so by Thm 3.3,
E[etX ] =

∏n
i=1 E[e

tXi ]. Each etXi has expectation

E[etXi ] = pi · et + (1 − pi) · 1
= 1 + pi(e

t − 1)

≤ epi(e
t−1) (by 1 + x ≤ ex for x ∈ R)

⇒ E[etX ] ≤
n∏

i=1

epi(e
t−1) = e

∑n
i=1 pi(e

t−1) = eµ(e
t−1).
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Cherno� bounds — upper tail
Proof of Thm 4.4.
The event of interest is

X ≥ (1 + δ)µ ⇐⇒ etX ≥ et(1+δ)µ

for any t > 0. Thus

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ]

≤ E[etX ]
et(1+δ)µ

(by Markov’s Inequality)

≤ eµ(e
t−1)

et(1+δ)µ
. (by the last Lemma)

This holds for any t > 0. For any δ > 0, we can let t = ln(1 + δ) > 0.
This immediately yields

Pr[X ≥ (1 + δ)µ] ≤ eµ(e
ln(1+δ)−1)−(ln(1+δ))(1+δ)µ

≤ eµ(1+δ−1)

(1 + δ)(1+δ)µ

=

(
eδ

(1 + δ)(1+δ)

)µ
.
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Cherno� bounds — upper tail

Theorem (4.4, full)
Let X1, . . . ,Xn be independent Bernoulli random variables with param-
eter pi for i ∈ [n].Let X =

∑n
i=1 Xi , and µ = E[X ].

1. For any δ > 0,

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)1+δ

)µ
;

2. For any 0 < δ ≤ 1,

Pr[X ≥ (1+ δ)µ] ≤ e−µδ
2/3;

3. For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R.
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Cherno� bounds — upper tail
Proof of Thm 4.4 (2.)
We already have

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ
.

So we want to show eδ

(1+δ)(1+δ) ≤ e−δ
2/3, for δ ∈ (0, 1]. Taking logarithms

on both sides, we want to show

δ− (1+ δ) ln(1+ δ) ≤ −δ2/3

Equivalently, we want to show

f (δ) := δ− (1+ δ) ln(1+ δ) + δ2/3 ≤ 0

for δ ∈ (0, 1]. Di�erentiating f , we get:

f ′(δ) = 1− ln(1+ δ) − (1+ δ)
1

1+ δ
+

2δ
3

= − ln(1+ δ) +
2δ
3
.
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Cherno� bounds — upper tail

Proof of Thm 4.4 (2.) cont.

f ′(δ) = − ln(1 + δ) + 2δ
3
.

Di�erentiate again

f ′′(δ) = −
1

1 + δ
+

2
3

Note

f ′′(δ)


< 0 for 0 < δ < 1/2;

= 0 for δ = 1/2;

> 0 for δ > 1/2.

Also f ′(0) = 0, f ′(1) ≈ −0.026 < 0 (check δ = 1 in top equation). Since f ′

decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that f ′(δ) < 0,
for all δ ∈ (0, 1].

By f (0) = 0, this implies that f (δ) ≤ 0 in all of [0, 1].
Hence δ − (1 + δ) ln(1 + δ) ≤ −δ2/3, proving (2.).
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Cherno� bounds — upper tail

(3.) For R ≥ 6µ,
Pr[X ≥ R] ≤ 2−R.

Proof of Thm 4.4 (3.)
Let R = (1 + δ)µ and thus for R ≥ 6µ, we have δ = R/µ − 1 ≥ 5. By Thm 4.4 (1.)

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

=

 e
δ

1+δ

1 + δ

(1+δ)µ

≤
(

e
1 + δ

)(1+δ)µ

≤
( e
6

)R
≤ 2−R.
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Cherno� Bounds (lower tail)

Theorem (4.5)
Let X1, . . . ,Xn be independent Poisson trials such that Pr[Xi = 1] = pi for all
i ∈ [n]. Let X =

∑n
i=1 Xi , and µ = E[X ]. For any 0 < δ < 1, we have the

following Cherno� bounds:

1.

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
;

2.
Pr[X ≤ (1− δ)µ] ≤ e−µδ

2/2;

I Proof is similar to Thm 4.4 (see book).

I Note the bound of (2.) is slightly be�er than the bound for≥ (1+δ)µ.
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Concentration

Corollary (4.6)
Let X1, . . . ,Xn be independent Bernoulli rv such that Pr[Xi = 1] = pi for
all i ∈ [n]. Let X =

∑n
i=1 Xi , and µ = E[X ]. Then for any δ, 0 < δ < 1,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

I For most applications, we will want to work with a symmetric
version like in this Corollary.

I We “threw away” a bit in moving from the
(

e±δ

(1±δ)1±δ

)µ
versions,

but they are tricky to work with.
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Analysing a collection of coin flips

Suppose we have pi = 1/2 for all i ∈ [n].

We have µ = E[X ] = n
2 , Var[X ] =

n
4 .

Consider the probability of being further than 5
√
n from µ.

Chebyshev Pr[|X − µ| ≥ 5
√
n] ≤ Var[X]

25n = 1
100

Cherno� Work out the δ — we need µδ = 5
√
n, so need

δ = 5
√
n/µ = 10

√
n/n = 10√

n . Then by Cherno�

Pr[|X − µ| ≥ 5
√
n] ≤ 2e−µδ

2/3 = 2e
−102·n
2·3·
√

n2 = 2e−16.6....

This is much smaller than the Chebyshev bound (though
note it doesn’t depend on n).

Get much improved bounds because Cherno� uses specialised analysis for
sums of independent Bernoulli variables.
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Unbiased +1/− 1 variables
In fact, for the case of unbiased variables, we can do even be�er than 2e−µδ

2/3.
We first switch to +1/-1 variables.

Theorem (4.7)
Let X1, . . . ,Xn be independent random variables with Pr[Xi = 1] = 1/2 =
Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk . Note µ = E[X ] = 0. Then for

any a > 0,
Pr[X ≥ a] ≤ e−a2/2n.

Proof. We again consider the moment generating function E[tXi ]. We have

E
[
etXi

]
=

1
2
et +

1
2
e−t ≤ et

2/2

where the inequality follows by Taylor expansions of et and e−t :

et = 1+ t +
t2

2
+

t3

3!
+ . . .+

t i

i!
+ . . .

e−t = 1− t +
t2

2
−

t3

3!
+ . . .+ (−1)i

t i

i!
+ . . .

So 1
2
et +

1
2
e−t =

∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

(t2/2)i

i!
= et

2/2.
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Unbiased +1/− 1 variables

Proof of Thm 4.7 cont.
Thus we have

E
[
etX

]
=

n∏
i=1

E
[
etXi

]
≤ et

2n/2;

Hence
Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]

eta = e(t
2n/2)−ta.

This time se�ing t = a/n we get:

Pr[X ≥ a] ≤ e−a2/2n.

The lower tail is completely symmetric. Think −X .

Pr[X ≤ −a] = Pr[−X ≥ a] ≤ e−a2/2n.
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Unbiased +1/− 1 variables

Corollary (4.8)
Let X1, . . . ,Xn be independent random variables with Pr[Xi = 1] = 1/2 =
Pr[Xi = −1] for all i ∈ [n]. Let X =

∑n
k=1 Xk . Note µ = E[X ] = 0. Then for

any a > 0,
Pr[|X | ≥ a] ≤ 2e−a2/2n.
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Unbiased 0/1 variables

Consider Y1, . . . ,Yn with Pr[Yi = 1] = Pr[Yi = 0] = 1/2 for all i ∈ [n].
Define Xi = 2Yi − 1 for every i ∈ [n]. Then

Xi =

{
1 if Yi = 1
−1 if Yi = 0

Corollary (4.9, 4.10)
For Y =

∑n
i=1 Yi and X =

∑n
i=1 Xi , we have

Pr[Y ≥ n
2 + a] = Pr[X ≥ 2a] ≤ e−2a2/n;

Pr[Y ≤ n
2 − a] = Pr[X ≤ −2a] ≤ e−2a2/n.

Let µ = E[Y ] = n/2 and a = δµ, for δ > 0. Note µ+ a = (1+ δ)µ. Thus

Pr[Y ≥ (1+ δ)µ] = e−2a2/n = e−2δ2µ2/(2µ) = e−δ
2µ.
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Biased 0/1 variables – revisited

We didn’t yet quite manage to prove one of the original Cherno� bounds I
stated, namely:

Theorem
Let X1, . . . ,Xn, be independent Bernoulli trials, Xi ∈ {0, 1}, with Pr[Xi = 1] =
p. Let X =

∑n
i=1 Xi . Hence we have E[X ] = pn. Then

for all ε > 0, Pr[|X − E[X ]| ≥ εn] ≤ 2e−2nε2
.

This has slightly be�er constants in the exponent on the RHS than what we
have shown so far. It follows by a slightly more involved analysis.
(This is exercise 4.13 in the book.)
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References

I Read Chapter 4 of book [MU], sections 4.1-4.5.

I We will continue with Cherno�/Hoe�ding bounds, and their applica-
tions, next time.
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