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Bounding the probability of deviations from expectation

We have already seen ...

Theorem (3.1, Markov’s Inequality)

Let X be any random variable that takes only non-negative values. Then for
any a > 0,
E[X]

Pr[X >ad < —.
a

Theorem (3.2, Chebyshev’s Inequality)
For every a > 0,

Var(X]

PrllX —EIX]| > d < —
a

These are generic. Chernoff/Hoeffding bounds give specific, much tighter,
bounds for sums of independent random variables and related distributions.
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Chernoff Bounds - a first look, and applications

To gain intuition, we first state and use a couple of specific Chernoff bounds.

Theorem (Two special cases of Chernoff bounds)

Suppose we conduct a sequence of n mutually independent Bernoulli trials,
X; € {0, 1}, with probability p of “success” (i.e., getting a 1, i.e., heads) in each
trial. Let X = Y !, X; be the binomially distributed r.v. that counts the total
number of successes (recall that E[X] = pn). Then:

1. Foralle > 0,Pr(|X —E[X]| > en) < 2e—2n€’
2. Forall R > 6E[X],Pr(X > R) < 2R
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First simple application of Chernoff bounds

Question: A biased coin is flipped 200 times consecutively, and comes up
heads with probability 1/10 each time it is flipped. Give an upper bound on
the probability that it will come up heads at least 120 times.
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First simple application of Chernoff bounds

Question: A biased coin is flipped 200 times consecutively, and comes up
heads with probability 1/10 each time it is flipped. Give an upper bound on
the probability that it will come up heads at least 120 times.

Solution: Let X be the r.v. that counts the number of heads. Recall:
E[X] = pn = (1/10) - 200 = 20. By the given Chernoff bound (2.),

Pr[X > 120] = Pr[X > 6E[X]] < 2 6EX] — = (620) _ 5—120

Note: By using Markov’s inequality, we are only able to determine that

EX] _ 20 __ 1

But by using Chernoff bounds, which are specifically geared for large de-
viation bounds for binomial and other distributions which arise as sums of
independent r.vs, we get that Pr[X > 120] < 2712,

This is a vastly better upper bound!!
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A simple but fundamental application of Chernoff bounds

One of the most basic tasks in statistics: learning a distribution

Suppose you are given a biased coin, which lands heads with proba-
bility p each time it is flipped. But you are not told what p is. You
want to learn an estimate of what p is from samples.

This is the parameter estimation problem.

To estimate p, you can of course flip the coin ntimes, count the num-
ber of times, X, that it lands heads, and give the estimate:

“pis roughly =
But how big does n have to be for your estimate % to (probably) be
“good”?
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A simple but fundamental application of Chernoff bounds

One of the most basic tasks in statistics: learning a distribution

Suppose you are given a biased coin, which lands heads with proba-
bility p each time it is flipped. But you are not told what p is. You
want to learn an estimate of what p is from samples.

This is the parameter estimation problem.

To estimate p, you can of course flip the coin ntimes, count the num-
ber of times, X, that it lands heads, and give the estimate:

“pis roughly =

But how big does n have to be for your estimate % to (probably) be
“good”? Concretely, how many independent random samples (coin
flips), n, do you need in order to be sure that, say:

1

—] < —
30 25
Note that Pr| % —pl > 31—0] = Pr[|X — pn| > %n].

X
Pr[|— — p| > ?
n

So we can use Chernoff bound (1.) to bound n.
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Question: How many random samples ndo | need to make sure that:

1
25

1
Pr(|X — > —n| < ?
r[|X — pnl 30 n <
Solution: Let X be the r.v. that counts the number of heads from n
coin flips. Recall that E[X] = pn.
By Chernoff bound (1.), Pr[|X — pn| > en] < 2¢2"¢
Let € = and let n = 1800, then

2

%a
PrIX — pn| > n] < 2¢72180(5)° = 2674 = 0.0366 < 0.04 = 5.
Thus, 1800 random samples (i-e., coin flips) suffice to make sure that,

with probability at least 2 25, your estlmate 2 for the coin’s bias p is
correct to within additive error at most ;.

These kinds of bounds are crucial in statistical analysis.
(For things like “confidence intervals”, etc.)
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Recall the Central Limit Theorem

One of the most fundamental theorems in all of probability and statistics.
Let Xi, ..., X, be independent identically distributed (i.i.d.) r.v.s, with

E[X;] = p; and Var[X;] = 0? > 0, where pt; = y;and 0; = o}, forall i, j € [n].
Let X = > ", X;, 0 = E[X] = np; and 0? = Var[X] = no?. The Central
Limit Theorem tells us what the distribution of X looks like in the limit as
n — oo.

Theorem (Central Limit Theorem)

As n — oo, the distribution of % approaches the standard normal (Gaus-
sian) distribution N(0, 1). Thus, for any fixed > 0,

1 o0 2 1 2
lim Pr{|X — u| > Bol :—J e U/ 2dt (%% —— ¢ P /2)
lim PrlX —p > B 2 ) fortp

However: this theorem is only a statement about the limit behavior, and
says nothing about the rate of convergence, nor behavior for particular n.
Also, it describes probability of deviating by a factor (3 times the standard
deviation o of X, not the probability of arbitrary deviations.

(credit: A. Sinclair’s lecture notes )
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Humble origins: framework for proving Chernoff bounds

Proving Chernoff bounds starts by simply applying Markov’s inequality to
an exponential of the sum X = X; + ... 4+ X, of independent r.v’s. For any
t>0:

<]

[e”]

e ta

Pr[X > a] = Pr[e” > ] <

(Ele™] is known as the “moment generating function” of the r.v. X.
It is also used commonly in proofs of the central limit theorem.)

Hence,
E tX
Pr[X > a < infﬁ
t>0 ela
Similarly, for t < 0, we have:
E tX
PrX < df = Prle? > ¢ < H€ ]
e
Hence
E tX
PrX < al < inf 20
t<0 ela

Chernoff bounds are obtained by suitably choosing t, depending on context.
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Chernoff bounds — upper tail

Poisson trials - sequence of Bernoulli variables X; with varying p;’s.

Theorem (4.4, basic form)
Let X1, ..., X, be independent Bernoulli random variables with parameter p;

fori € [n].Let X = Z;':] X;, and u = E[X] = Z;':] pi. Then for any & > 0,
ed "
Pr[X > (1+6 < | — .
0 000 < (77

For example, if E[X] = uw = pn,and 6 = 1, and p = 1/4, then

pn
Pr(X >2u] < G) = (0.67958)P" = (0.67958)"/* < 2~ (/%)
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Comparing with Chebyshev’s inequality

Theorem (4.4, basic Chernoff)
5 53
PriX > (148 < (s ) -

Consider the case where p; = p and 1 = pn. Var[X;] = p — p%, and due to
independence Var[X] = (p— p?)n = u(1—p). With Chebyshev’s inequality

Pr[X > (1+8)u] < Pr[IX —pl > dul

pl—p) 1—p 1—p

< = =
- &? o &%pn

= 0(1/n).

Thus, Chebyshev gives an inverse polynomial tail whereas Chernoff gives
us an exponential tail.
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Chernoff bounds — upper tail

Lemma
Let X1, ..., Xn and X be the same as before and n. = E[X]. Forany t € R,

E[EIX} < eu[etf1 ) .

Proof.
Consider

E[etx} —E [et[):7:1X/)] —F |:H etXi:| .
i=1

The X; and hence the e” are mutually independent, so by Thm 3.3,
E[e”] =[], E[e¥]. Each " has expectation

Ele] =pi-e+(1—p)-1

=1+pile' —1)
< File=1 (by 14+ x < € for x € R)
S BN < [ = eSnld o e, O
i=1
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Chernoff bounds — upper tail
Proof of Thm 4.4.

The event of interest is X s
X> (148 & e >
forany t > 0. Thus

Pr[X > (1+8)u] = Prle™ > /"7

EleX

< t(%é)}u (by Markov’s Inequality)
e
eu(e'ﬂ)

< T (by the last Lemma)
e
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Chernoff bounds — upper tail
Proof of Thm 4.4.

The event of interest is X s
X> (148 &= e >
forany t > 0. Thus

Pr[X > (1+8)u] = Prle™ > /"7

EleX

< t(%&]}p (by Markov’s Inequality)
e
eu(e'fﬂ

< T (by the last Lemma)
e

This holds for any ¢ > 0. For any & > 0, we can let t = In(1+8) > 0.
This immediately yields

PriX > (148 < eu(el"(1+5)71)7(ln(1+5))[1+6)u
- et r(1+86—1)
= (1+6)0+0m

= (rapm) - O
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Chernoff bounds — upper tail

Theorem (4.4, full)

Let Xy, ..., X, be independent Bernoulli random variables with param-
eter p; fori € [n].Let X =Y [, X;, and n. = E[X].

1. Foranyd >0,

e "
PriX > (14+0)ul < (Ws> )

2. Forany0 < <1,
Pr(X > (1+8)u] < e ™3

3. ForR > 6y,
Pr[X > R] < 27X
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Chernoff bounds — upper tail

Proof of Thm 4.4 (2.)
We already have

5 23
PriX > (1+8)y < (UJFEM) .

So we want to show “JF;]% < e %/3 for & € (0, 1. Taking logarithms

on both sides, we want to show
5—(1+8)In(1+5) < —5%/3
Equivalently, we want to show
f(8):= §—(1+8)In(1+8)+8/3<0

for & € (0, 1]. Differentiating f, we get:

. N 1,2
F18)=1-In(148) = (14+8) ;5 + 3
25

= —In(1 =.
In( +6)+3

RA - Lecture 7 — slide 14



Chernoff bounds — upper tail
Proof of Thm 4.4 (2.) cont.

26
f'(8)=—In(1+8) + 3
Differentiate again

" 1 2
fre) = 1+6+3

Note

<0 for0<d<1/2
F(8){=0 ford=1/2
>0 ford>1/2
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Chernoff bounds — upper tail
Proof of Thm 4.4 (2.) cont.

26
f'(8)=—In(1+8) + 3
Differentiate again

1 2

A A

Note
<0 for0<d<1/2
F(8){=0 ford=1/2
>0 ford>1/2

Also f'(0) = 0, f'(1) &~ —0.026 < 0 (check & = 1 in top equation). Since f’

decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that f'(8) < 0,
for all 5 € (0, 1].
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Chernoff bounds — upper tail
Proof of Thm 4.4 (2.) cont.

26
f'(8)=—In(1+8) + 3
Differentiate again

1 1 2
fre) = 1+6+3

Note
<0 for0<d<1/2

F(8){=0 ford=1/2
>0 ford>1/2

Also f'(0) = 0, f'(1) &~ —0.026 < 0 (check & = 1 in top equation). Since f’
decreases from 0 to 1/2 and then increases from 1/2 to 1, we have that f'(8) < 0,

for all 5 € (0, 1].
By f(0) = 0, this implies that f(8) < 0 in all of [0, 1].
Hence 5 — (1+ 68)In(1+8) < —6%/3, proving (2.). O
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Chernoff bounds — upper tail

(3.) ForR> 6y,
Prix > R <27k

Proof of Thm 4.4 (3.)
Let R = (1+ d)u and thus for R > 6u, we have 6 = R/u— 1> 5. By Thm 4.4 (1))

5 v
HHZU+&MS<4JTS>
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Chernoff Bounds (lower tail)

Theorem (4.5)

Let Xi, ..., X, be independent Poisson trials such that Pr[X; = 1] = p; for all
i€ n. Let X = Z;’:] X, and @ = E[X]. Forany 0 < & < 1, we have the
following Chernoff bounds:

1.

e ? H
PriX < (1=08)u] < <(1—5)‘_5> ;

PriX < (1-8)u] < e /%

» Proof is similar to Thm 4.4 (see book).

» Note the bound of (2.) is slightly better than the bound for > (14 8)w.
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Concentration

Corollary (4.6)
Let Xy, ..., X, be independent Bernoulli rv such that Pr[X; = 1] = p; for
alli € [n]. Let X = Y, X;, and p = E[X]. Then for any 5,0 < < 1,

PrilX — | > dp] < 2¢H/3,

» For most applications, we will want to work with a symmetric

version like in this Corollary.
« » o g . £ \H .
> We “threw away” a bit in moving from the (W) versions,

but they are tricky to work with.
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Analysing a collection of coin flips

Suppose we have p; = 1/2 for all i € [n].

We have i = E[X] = 2, Var[X] = 2.

Consider the probability of being further than 5,/n from .
Chebyshev Pr[|X — u| > 5¢/n] < VarlX] _ 1

25n 100
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Analysing a collection of coin flips

Suppose we have p; = 1/2 for all i € [n].

We have i = E[X] = 2, Var[X] = 2.

Consider the probability of being further than 5,/n from .
Chebyshev Pr[|X —u| > 54/n] < VarlX] _ 1

25n 100

Chernoff Work out the  — we need ud = 5/, so need
b =5y/n/L=10y/n/n= %. Then by Chernoff

—10%.n

PrX — p > 5¢/n] < 2e H5/3 = 2¢r3vit = 2¢ 166

This is much smaller than the Chebyshev bound (though
note it doesn’t depend on n).

Get much improved bounds because Chernoff uses specialised analysis for
sums of independent Bernoulli variables.
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Unbiased 41/ — 1 variables
In fact, for the case of unbiased variables, we can do even better than 2eM8/3,
We first switch to +1/-1 variables.
Theorem (4.7)

Let Xi,..., X, be independent random variables with Pr[X; = 1] = 1/2 =
Pr(X; = —1] foralli € [n]. Let X = ) |_, Xk. Note u = E[X] = 0. Then for

any a > 0,
Y PrlX >a < e/,

Proof. We again consider the moment generating function E[*]. We have
1 1 2
E[e¥] = —¢f 7e—t<et/2
[¥] =S¢ +5e <

where the inequality follows by Taylor expansions of e’ and e~ '

el = 1+t+t—2+t—3+ +t—i+
TR
T St
—t 1
et = 1—t+——— 4. +(—-1)=+...
to gt +( )’.!+

So £2i

1,01, & o (/2 ),
—e'+ —e — < = e .
IR
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Unbiased 41/ — 1 variables

Proof of Thm 4.7 cont.

Thus we have
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Unbiased 41/ — 1 variables

Proof of Thm 4.7 cont.

Thus we have

Hence E[e*] )
Pr[X > d = Prle” > ¢] < == = /20
This time setting t = a/n we get:
Pr[X > a] < e @/, O
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Unbiased 41/ — 1 variables

Proof of Thm 4.7 cont.

Thus we have

Hence E[e*] )
PriX > a = Pr[e” > ¢ < = = el /27
This time setting t = a/n we get:
Pr[X > a] < e @/, O

The lower tail is completely symmetric. Think —X.

PriIX < —a =Pr[-X>a < e/,
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Unbiased 41/ — 1 variables

Corollary (4.8)

Let Xi,...,X, be independent random variables with Pr[X; = 1] = 1/2 =
Pr[X; = —1] foralli € [n]. Let X = 2221 Xk. Note u = E[X] = 0. Then for
any a > 0,

Pr[X| > al < 29/,
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Unbiased 0/1 variables

Consider Y;,..., Y, with Pr[Y; = 1] = Pr[Y; = 0] = 1/2for all i € [n].
Define X; = 2Y; — 1 for every i € [n]. Then

B 1 ify,=1
X"{—1 ifY,; =0

Corollary (4.9, 4.10)
ForyY=3%" Yiand X =Y _, X, we have

Pr[Y >

+d=PrlX>2a < e/n
Prly <?—a =Pr[X <24 < e 2/n,

Let w = E[Y] = n/2 and a = dy, for & > 0. Note L+ a = (1+ 6)u. Thus

Pr[Y > (14 8)ul = e*Zaz/n _ efzézuz/(w) — e*ézu-
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Biased 0/1 variables — revisited

We didn’t yet quite manage to prove one of the original Chernoff bounds |
stated, namely:

Theorem
Let Xi, ..., Xy, be independent Bernoulli trials, X; € {0, 1}, with Pr[X; = 1] =
p. Let X = 3", X;. Hence we have E[X] = pn. Then

foralle >0, Pr[|[X — E[X]| > en] < 2e7 2
This has slightly better constants in the exponent on the RHS than what we

have shown so far. It follows by a slightly more involved analysis.
(This is exercise 4.13 in the book.)
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References

» Read Chapter 4 of book [MU], sections 4.1-4.5.

» We will continue with Chernoff/Hoeffding bounds, and their applica-
tions, next time.
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