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Recap: Chernoff Bounds (upper tail)
Poisson trials - sequence of Bernoulli variables X; with varying p;s.

Theorem (4.4)

Let Xy, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for
alli € [n]. Let X = Y, X;, and . = E[X]. We have the following Chernoff
bounds:

1. Forany d >0,

65 H
PI‘[X? (1 +5)}L] < (Ws) 3

2. Forany0 <& < 1,
Pr[X > (14 8)u] < e /3

3. ForR = 6y,
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Recap: Chernoff Bounds (lower tail)

Theorem (4.5)

Let Xi, ..., X, be independent 0/1 Poisson trials such that Pr[X; = 1] = p; for

alli € [n]. Let X = Y,]_, X;, and u = E[X]. Forany 0 < & < 1, we have the
following Chernoff bounds:

1. - "
Pr[X < (1 — 6)”] < ((1_6)1_5> N
PrX < (1-8)u] < e/

> Proof is similar to Thm 4.4.

» Bound of (2.) is slightly better than the bound for = (1 + §)p.
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Recap: Concentration

Corollary (4.6)

Let Xq, ..., X, be independent 0/1 Poisson trials such thatPr[X; = 1] =
piforallie [n]. Let X = >}, Xi, and p = E[X] = ., pj. Then for
any 5,0 < § < 1,

Pr(|X — p| = 6u] < 2e7M°73,

> For almost all applications, we will want to work with such a

symmetric version like the Corollary.

« 5 ps . 5 \H .
> We “threw away” a bit in moving from the (m) versions,

but they are tricky to work with.

RA — Lecture 8 — slide 4



Recap: Unbiased +1/ — 1 variables

For unbiased variables, we can do better than 2e~#%°/3 by switching to +1/-1
variables.

Theorem (4.7)

Let Xi, ..., X, be independent random variables with Pr[X; = 1] = 1/2 =
Pr[X; = —1] foralli € [n]. Let X = },_, Xi. Note @ = E[X] = 0. Then for
any a > 0,

Pr[X = a] < e/,
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Recap: Unbiased 0/1 variables

Consider Y;,..., Y, such that Pr[Y; = 0] = Pr[Y; = 1] = 1/2for all i € [n].
Define X; = 2Y; — 1for every i € [n]. Then

1ifY =1
X = { -1 ifY;=0

Corollary (4.9, 4.10)
ForY = 27:1 Yi, X = 27:1 Xi, we have

Pr[ 2a) < e/
T

Pr|

Pr|
T

+ a] X =
Pr[X < —24] < e24/n,

Y > =
Y<Z2-—4q]=

NI NS
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i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables X; with
a fixed constant parameter p, Chernoff bounds on their sum X = .7 . X;
yield that, roughly speaking, X has deviation from expectation

» Q(4/n) with probability O(1);
» Q(v/nln n) with probability O(n);
» Q(n) with probability e~ (.
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Application: set balancing and “discrepency” minimization

We have an n x m binary matrix A (entries from {0, 1}). We consider the
value of

A-b=cg,
when b e {—1,+1}™ (note ¢ will then be n-dimensional).

Goal is to find b € {—1,+1}™ such that the value of [|A- b|,, = max/_, |¢|
is minimized.
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Application: set balancing and “discrepency” minimization

We have an n x m binary matrix A (entries from {0, 1}). We consider the
value of

A-b=cg¢,
when b e {—1,+1}™ (note ¢ will then be n-dimensional).

Goal is to find b € {—1,+1}™ such that the value of [|A- b|,, = max/_, |¢|
is minimized.

Exact optimization is NP-hard.

Randomly choosing b is already pretty good: choose b € {—1,+1}™ u.a.r. by
generating b; independently and uniformly from {—1, +1}. We can show
Theorem (4.11)

For b chosen u.ar. from {—1,+1}™,

Pr[||Ab||c = +/4mIn(n)] <

>IN
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Set balancing: proof

> ||“llo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value

< 4/4mln(n).
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Set balancing: proof

> ||“llo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value

< 4/4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 3. It then follows from the
Union Bound that the probability that some entry is “too large” is <

2 _ 2

n-45 ==
n? n
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Set balancing: proof

> ||-||oo is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A- b has absolute value
< 4/4mln(n).

» There are n different entries of ¢ = A - b; we will show that for each
entry, it is “too large” with probability < 3. It then follows from the
Union Bound that the probability that some entry is “too large” is <

2 _ 2

n-45 ==
n? n

> For row i of A, there are k; < m entries that are non-0 (i.e., 1). The
absolute value of A; - b is the (absolute) weighted sum of these entries,
randomly weighted by +1 or -1 ... so we have k; random trials of un-
biased +1/-1. Let Y; = |A; - b be the random variable representing this
sum. Setting a = /4mln(n), the Chernoff bound in Thm 4.7 says

2
Pr[Y; = \/4mlIn(n)] < 2¢*min(n/2k _ yp=2m/ki =

n

as required. O
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More on set balancing

This last result implies that for most b we have |A - b, = O(v'mInn), but
better b exists, at least if m = n:

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

|A- Bl < 6v/n.

This is tight up to constants. There exists A such that |A - b|,, = Q(y/n)
for any b.
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More on set balancing

This last result implies that for most b we have |A - b, = O(v'mInn), but
better b exists, at least if m = n:

Theorem (Spencer, 1985)
For a n-by-n 0/1 matrix A, there exists b € {+1,—1}" such that

|A- Bl < 6v/n.
This is tight up to constants. There exists A such that |A - b|,, = Q(y/n)
for any b.

Spencer’s result was non-constructive. Subsequently, efficient randomized
polynomial-time algorithms to find such b where discovered by Bansal (2010)
and by Lovett and Meka (2012). These algorithms have (subsequently) been
derandomized.

To learn more on this topic, see Chapter 13 of the following book:
N. Alon and J. Spencer, “The Probabilistic Method”, 4th edition, 2016.
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Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, D : {0, 1}* — {*Yes”, “No”}.

Suppose we have a (Monte Carlo) randomized polynomial time algorithm,
M, with 2-sided error, that on input x € {0, 1}* of length n = |x]|, runs in
time g(n), for some polynomial g(-), and such that for all x € {0, 1}*,

(N.B. here 3/4 can be replaced with any p = 3 + €, where € € Q(il))

1
2 |x

Question: Suppose we want to devise a new 2-sided error Monte Carlo
randomized polynomial time algorithm, M’, such that

1
—

Can we do it?
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Question: Suppose we want to devise a new 2-sided error Monte Carlo
randomized polynomial time algorithm, M’, such that

1
—

Can we do it?
Hint: Yes, we can, with a simple algorithm, and we can prove its correctness
using Chernoff bounds.
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Error reduction for 2-sided error algorithms

Algorithm M’: On input x, with n = |x|, repeatedly run M(x), a total of
20n times. Let y1, ..., y20n denote the sequence of outputs of the different
(independent) runs of M(x). Our algorithm M’(x) will answer “Yes” if a
majority, i.e., > 10n, of the 20n different runs answered “Yes”. Otherwise, it
will answer “No”.

Let the random variables X, ..., Xy, € {0, 1} be defined as follows:

X,-={ 1 ify; = D(x)

0 otherwise

Note that X, . .., Xy, are mutually independent, and that Pr[X; = 1] = 3/4,
for all i € [20n].

Let X = 37" X;. Note that p = E[X] = 2(20n) = 15n.

=

Note that the new algorithm M’ answers incorrectly only if X < 10n.
We want to bound the probability of this bad event.
We will use Chernoff bounds.
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Error reduction for 2-sided error algorithms — proof

We will use Chernoff bounds for the lower tail (Theorem 4.5(2.) ),
which tells us that for any 0 < 6 < 1,

PriX < (1—8)u] < e ™2

Let § := 1. Note that (1—8)u = 2 - 150 = 10n.
Hence we have:

Pr[X < 10n] < e 15032 — g < 27",
(The last inequality follows because et = 2.300975. . .)

This completes the proof that the new algorithm M’ has error proba-
bility at most 5. Note M has polynomial running time (20n) - q(n).0
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Hoeffding’s inequality — beyond Bernoulli

Chernoff bounds, as given, only work for sums of Bernoulli r.v’s. What if
allow sums of real-valued r.v’s, X; € [a, b]?

Theorem (4.12, Hoeffding’s inequality)

Let X, ..., X, be independent r.vs with E[X;] = wandPr[a < X; < b] = 1.
Then,

DX - u‘ > s] < 2¢7 2/ (b=0)"

_I n
Pr[
nl:]

The proof also goes through the moment generating function E[e].
A slightly more general form of the theorem is:

Theorem (4.14, Hoeffding’s inequality)

Let Xi, ..., X, be independent r.v.s with E[X;] = w; andPr[a; < X; < b;] = 1.
Then,

ZX*;ZH,

_ 2n?e?
]<2e S, G a?
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Not necessarily independent variables:
Martingales and the Azuma-Hoeffding inequality

NOT Examinable. To learn more, see Chap. 13 of [MU] on “Martingales”.
A sequence of r.vs Zy, Zy, Zy, . . . such that E[| Z|] < oo forall i > 0, is called
a martingale (respectively, a super-martingale) if E[Z;11 | Zo,...,Z] = Z
(respectively, if E[Zi11 | Zo, ..., Z;] < Z;) with probability 1, for all i > 0.
Example: let Xi, Xz, X, ... beiid. rv's, X; € {—1,+1}, with Pr[X; = +1] =
p.foralli. Letq = (1—p). Let S, := >, X;3 S := 0. Let Z, := S,—n(p—q).
Then Zy, Zy, Z,, . . . defines a martingale. If p < g, then Sy, 51, S, . . . defines
a super-martingale. (Note E[|S,|] < nand E[|Z,|] < 2n.)

Theorem (13.4: Azuma-Hoeffding inequality)

IfZy,...,Z,isa (super-)martingale such that for all k > 1 there is some ¢, = 0
such that Pr[|Zy — Zy—1| < ] = 1, then forall t > 1 and any A > 0

A2
Pr[Zt — Z() 2 }\] < exp [M] .
k=1

Proof is similar to proof of Hoeffding’s inequality (see Chap. 13 of [MU]).
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Another variation on Hoeffding’s inequality

Not Examinable.
There are many many variations of Chernoff-Hoeffding bounds.
Here’s another useful one (see Chap. 13 of [MU]):

Theorem (13.7: McDiarmid’s Inequality)

Let Xi,..., X, be independent random variables, X taking values in Ay S R,
for each k € [n]. Suppose that the (measurable) function f : (X j_, Ac) — R
satisfies

f(x) = (&) < a

whenever x, X' only differ in their k-th coordinate.
Define the random variable Y = f[Xi, ..., X,]|. Then for any t > 0,

-2t
ke[n] “k

McDiarmid’s inequality can be derived from the Azuma-Hoeffding inequal-
ity. (See Chapter 13 of [MU].)

RA - Lecture 8 — slide 16



References

» Chapter 4 of [MU] sections 4.1-4.5

» If you want to learn more about the rich subject of Martingales, and
the Azuma-Hoeffding inequality, see Chapter 13 of [MU]. (But that
chapter and content is not examinable in this course.)
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