Randomized Algorithms

Kousha Etessami

Recap: Chernoff Bounds (upper tail)

Poisson trials - sequence of Bernoulli variables X_i with varying p_i s.

Theorem (4.4)

Let $X_1, ..., X_n$ be independent 0/1 Poisson trials such that $Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. We have the following Chernoff bounds:

1. For any $\delta > 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu};$$

2. For any $0 < \delta \leq 1$,

$$\Pr[X \ge (1+\delta)\mu] \leqslant e^{-\mu\delta^2/3};$$

3. For $R \ge 6\mu$,

$$\Pr[X \ge R] \leq 2^{-R}.$$

Recap: Chernoff Bounds (lower tail)

Theorem (4.5)

Let $X_1, ..., X_n$ be independent 0/1 Poisson trials such that $Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. For any $0 < \delta < 1$, we have the following Chernoff bounds:

1.

$$\Pr[X \leq (1-\delta)\mu] \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu};$$
2.

$$\Pr[X \leq (1-\delta)\mu] \leq e^{-\mu\delta^{2}/2};$$

- Proof is similar to Thm 4.4.
- ▶ Bound of (2.) is slightly better than the bound for $\ge (1 + \delta)\mu$.

Recap: Concentration

Corollary (4.6)

Let X_1, \ldots, X_n be independent 0/1 Poisson trials such that $\Pr[X_i = 1] = p_i$ for all $i \in [n]$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X] = \sum_{i=1}^n p_i$. Then for any $\delta, 0 < \delta < 1$,

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}.$$

- For almost all applications, we will want to work with such a symmetric version like the Corollary.
- We "threw away" a bit in moving from the (^{e±δ}/_{(1±δ)^{1±δ}})^μ versions, but they are tricky to work with.

Recap: Unbiased +1/-1 variables

For unbiased variables, we can do better than $2e^{-\mu\delta^2/3}$ by switching to +1/-1 variables.

Theorem (4.7)

Let X_1, \ldots, X_n be independent random variables with $\Pr[X_i = 1] = 1/2 = \Pr[X_i = -1]$ for all $i \in [n]$. Let $X = \sum_{k=1}^n X_k$. Note $\mu = E[X] = 0$. Then for any a > 0,

 $\Pr[X \ge a] \leq e^{-a^2/2n}.$

Recap: Unbiased 0/1 variables

Consider Y_1, \ldots, Y_n such that $\Pr[Y_i = 0] = \Pr[Y_i = 1] = 1/2$ for all $i \in [n]$. Define $X_i = 2Y_i - 1$ for every $i \in [n]$. Then

$$X_i = \begin{cases} 1 & \text{if } Y_i = 1 \\ -1 & \text{if } Y_i = 0 \end{cases}$$

Corollary (4.9, 4.10) For $Y = \sum_{i=1}^{n} Y_i$, $X = \sum_{i=1}^{n} X_i$, we have $\Pr[Y \ge \frac{n}{2} + a] = \Pr[X \ge 2a] \le e^{-2a^2/n}$; $\Pr[Y \le \frac{n}{2} - a] = \Pr[X \le -2a] \le e^{-2a^2/n}$.

For independent identically distributed (i.i.d.) Bernoulli variables X_i with a fixed constant parameter p, Chernoff bounds on their sum $X = \sum_{i=1}^{n} X_i$ yield that, roughly speaking, X has deviation from expectation

- $\Omega(\sqrt{n})$ with probability O(1);
- $\Omega(\sqrt{n \ln n})$ with probability $O(n^{-c})$;
- $\Omega(n)$ with probability $e^{-\Omega(n)}$.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0, 1\}$). We consider the value of

$$A \cdot \bar{b} = \bar{c},$$

when $\bar{b} \in \{-1, +1\}^m$ (note \bar{c} will then be *n*-dimensional).

Goal is to find $\bar{b} \in \{-1, +1\}^m$ such that the value of $||A \cdot \bar{b}||_{\infty} = \max_{j=1}^n |c_j|$ is minimized.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0, 1\}$). We consider the value of

$$A \cdot \bar{b} = \bar{c}$$

when $\bar{b} \in \{-1, +1\}^m$ (note \bar{c} will then be *n*-dimensional).

Goal is to find $\bar{b} \in \{-1, +1\}^m$ such that the value of $||A \cdot \bar{b}||_{\infty} = \max_{j=1}^n |c_j|$ is minimized.

Exact optimization is NP-hard.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0, 1\}$). We consider the value of

$$A \cdot \bar{b} = \bar{c},$$

when $\bar{b} \in \{-1, +1\}^m$ (note \bar{c} will then be *n*-dimensional).

Goal is to find $\bar{b} \in \{-1, +1\}^m$ such that the value of $||A \cdot \bar{b}||_{\infty} = \max_{j=1}^n |c_j|$ is minimized.

Exact optimization is NP-hard.

Randomly choosing *b* is already pretty good: choose $\bar{b} \in \{-1, +1\}^m$ u.a.r. by generating b_i independently and uniformly from $\{-1, +1\}$. We can show

Theorem (4.11)

For \bar{b} chosen u.a.r. from $\{-1, +1\}^m$,

$$\Pr[\|A\bar{b}\|_{\infty} \ge \sqrt{4m\ln(n)}] \le \frac{2}{n}.$$

Set balancing: proof

• $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, *every entry* of $A \cdot \bar{b}$ has absolute value $\leq \sqrt{4m \ln(n)}$.

Set balancing: proof

- $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, *every entry* of $A \cdot \bar{b}$ has absolute value $\leq \sqrt{4m \ln(n)}$.
- ▶ There are *n* different entries of $\bar{c} = A \cdot \bar{b}$; we will show that for each entry, it is "too large" with probability $\leq \frac{2}{n^2}$. It then follows from the Union Bound that the probability that *some* entry is "too large" is $\leq n \cdot \frac{2}{n^2} = \frac{2}{n}$.

Set balancing: proof

- $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, *every entry* of $A \cdot \bar{b}$ has absolute value $\leq \sqrt{4m \ln(n)}$.
- ▶ There are *n* different entries of $\bar{c} = A \cdot \bar{b}$; we will show that for each entry, it is "too large" with probability $\leq \frac{2}{n^2}$. It then follows from the Union Bound that the probability that *some* entry is "too large" is $\leq n \cdot \frac{2}{n^2} = \frac{2}{n}$.
- ▶ For row *i* of *A*, there are $k_i \leq m$ entries that are non-0 (i.e., 1). The absolute value of $A_i \cdot \bar{b}$ is the (absolute) weighted sum of these entries, *randomly* weighted by +1 or -1... so we have k_i random trials of unbiased +1/-1. Let $Y_i = |A_i \cdot \bar{b}|$ be the random variable representing this sum. Setting $a = \sqrt{4m\ln(n)}$, the Chernoff bound in Thm 4.7 says

$$\Pr[Y_i \ge \sqrt{4m\ln(n)}] \le 2e^{-4m\ln(n)/2k_i} = 2n^{-2m/k_i} \le \frac{2}{n^2},$$

as required.

More on set balancing

This last result implies that for *most* \bar{b} we have $||A \cdot \bar{b}||_{\infty} = O(\sqrt{m \ln n})$, but better \bar{b} exists, at least if m = n:

Theorem (Spencer, 1985)

For a *n*-by-n 0/1 matrix A, there exists $\bar{b} \in \{+1, -1\}^n$ such that

 $\|A\cdot\bar{b}\|_{\infty}\leqslant 6\sqrt{n}.$

This is tight up to constants. There exists A such that $||A \cdot \bar{b}||_{\infty} = \Omega(\sqrt{n})$ for any \bar{b} .

More on set balancing

This last result implies that for *most* \bar{b} we have $||A \cdot \bar{b}||_{\infty} = O(\sqrt{m \ln n})$, but better \bar{b} exists, at least if m = n:

Theorem (Spencer, 1985)

For a *n*-by-n 0/1 matrix A, there exists $\bar{b} \in \{+1, -1\}^n$ such that

 $\|A\cdot\bar{b}\|_{\infty}\leqslant 6\sqrt{n}.$

This is tight up to constants. There exists A such that $||A \cdot \bar{b}||_{\infty} = \Omega(\sqrt{n})$ for any \bar{b} .

Spencer's result was non-constructive. Subsequently, efficient randomized polynomial-time algorithms to find such \bar{b} where discovered by Bansal (2010) and by Lovett and Meka (2012). These algorithms have (subsequently) been derandomized.

To learn more on this topic, see Chapter 13 of the following book: N. Alon and J. Spencer, "The Probabilistic Method", 4th edition, 2016.

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D: \{0, 1\}^* \to \{\text{"Yes"}, \text{"No"}\}$. Suppose we have a (Monte Carlo) randomized polynomial time algorithm, M, with 2-sided error, that on input $x \in \{0, 1\}^*$ of length n = |x|, runs in time q(n), for some polynomial $q(\cdot)$, and such that for all $x \in \{0, 1\}^*$,

$$\Pr[\mathcal{M}(x) = D(x)] \ge \frac{3}{4}$$

(N.B. here 3/4 can be replaced with any $p = \frac{1}{2} + \epsilon$, where $\epsilon \in \Omega(\frac{1}{|x|})$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, M', such that

$$\Pr[M'(x) = D(x)] \ge 1 - \frac{1}{2^n}.$$

Can we do it?

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D: \{0, 1\}^* \to \{\text{"Yes"}, \text{"No"}\}$. Suppose we have a (Monte Carlo) randomized polynomial time algorithm, M, with 2-sided error, that on input $x \in \{0, 1\}^*$ of length n = |x|, runs in time q(n), for some polynomial $q(\cdot)$, and such that for all $x \in \{0, 1\}^*$,

$$\Pr[\mathcal{M}(x) = D(x)] \ge \frac{3}{4}$$

(N.B. here 3/4 can be replaced with any $p = \frac{1}{2} + \epsilon$, where $\epsilon \in \Omega(\frac{1}{|x|})$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, M', such that

$$\Pr[M'(x) = D(x)] \ge 1 - \frac{1}{2^n}.$$

Can we do it?

Hint: Yes, we can, with a simple algorithm, and we can prove its correctness using Chernoff bounds.

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D: \{0, 1\}^* \to \{\text{"Yes"}, \text{"No"}\}$. Suppose we have a (Monte Carlo) randomized polynomial time algorithm, M, with 2-sided error, that on input $x \in \{0, 1\}^*$ of length n = |x|, runs in time q(n), for some polynomial $q(\cdot)$, and such that for all $x \in \{0, 1\}^*$,

$$\Pr[\mathcal{M}(x) = D(x)] \ge \frac{3}{4}$$

(N.B. here 3/4 can be replaced with any $p = \frac{1}{2} + \epsilon$, where $\epsilon \in \Omega(\frac{1}{|x|})$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, M', such that

$$\Pr[M'(x) = D(x)] \ge 1 - \frac{1}{2^n}.$$

Can we do it?

Hint: Yes, we can, with a simple algorithm, and we can prove its correctness using Chernoff bounds.

Error reduction for 2-sided error algorithms

Algorithm M': On input x, with n = |x|, repeatedly run M(x), a total of 20n times. Let y_1, \ldots, y_{20n} denote the sequence of outputs of the different (independent) runs of M(x). Our algorithm M'(x) will answer "Yes" if a majority, i.e., > 10n, of the 20n different runs answered "Yes". Otherwise, it will answer "No".

Let the random variables $X_1, \ldots, X_{20n} \in \{0, 1\}$ be defined as follows:

$$X_i = \begin{cases} 1 & \text{if } y_i = D(x) \\ 0 & \text{otherwise} \end{cases}$$

Note that X_1, \ldots, X_{20n} are mutually independent, and that $\Pr[X_i = 1] = 3/4$, for all $i \in [20n]$.

Let
$$X = \sum_{i=1}^{20n} X_i$$
. Note that $\mu = E[X] = \frac{3}{4}(20n) = 15n$.

Note that the new algorithm M' answers incorrectly only if $X \le 10n$. We want to bound the probability of this bad event. We will use Chernoff bounds.

Error reduction for 2-sided error algorithms – proof

We will use Chernoff bounds for the lower tail (Theorem 4.5(2.)), which tells us that for any $0<\delta<1,$

$$\Pr[X \leq (1 - \delta)\mu] \leq e^{-\mu\delta^2/2}$$

Let $\delta := \frac{1}{3}$. Note that $(1 - \delta)\mu = \frac{2}{3} \cdot 15n = 10n$.
Hence we have:

$$\Pr[X \leq 10n] \leq e^{-15n(1/3)^2/2} = e^{-\frac{15}{18}n} \leq 2^{-n}.$$

(The last inequality follows because $e^{\frac{15}{18}} = 2.300975...$)

This completes the proof that the new algorithm M' has error probability at most $\frac{1}{2^n}$. Note M' has polynomial running time $(20n) \cdot q(n)$.

Hoeffding's inequality - beyond Bernoulli

Chernoff bounds, as given, only work for sums of Bernoulli r.v.'s. What if allow sums of real-valued r.v.'s, $X_i \in [a, b]$?

Theorem (4.12, Hoeffding's inequality)

Let X_1, \ldots, X_n be independent r.v.'s with $E[X_i] = \mu$ and $\Pr[a \leq X_i \leq b] = 1$. Then,

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \varepsilon\right] \leq 2e^{-2n\varepsilon^{2}/(b-a)^{2}}.$$

The proof also goes through the moment generating function $E[e^{tX}]$. A slightly more general form of the theorem is:

Theorem (4.14, Hoeffding's inequality)

Let X_1, \ldots, X_n be independent r.v.'s with $E[X_i] = \mu_i$ and $\Pr[a_i \leq X_i \leq b_i] = 1$. Then,

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}\mu_{i}\right| \geq \varepsilon\right] \leq 2e^{-\frac{2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}}$$

Not necessarily independent variables: Martingales and the Azuma-Hoeffding inequality

NOT Examinable. To learn more, see Chap. 13 of [MU] on "Martingales". A sequence of r.v.'s Z_0, Z_1, Z_2, \ldots such that $E[|Z_i|] < \infty$ for all $i \ge 0$, is called a martingale (respectively, a super-martingale) if $E[Z_{i+1} | Z_0, \ldots, Z_i] = Z_i$ (respectively, if $E[Z_{i+1} | Z_0, \ldots, Z_i] \le Z_i$) with probability 1, for all $i \ge 0$. **Example:** let X_1, X_2, X_3, \ldots be i.i.d. r.v.'s, $X_i \in \{-1, +1\}$, with $Pr[X_i = +1] = p$, for all *i*. Let q = (1-p). Let $S_n := \sum_{i=1}^n X_i$; $S_0 := 0$. Let $Z_n := S_n - n(p-q)$. Then Z_0, Z_1, Z_2, \ldots defines a martingale. If $p \le q$, then S_0, S_1, S_2, \ldots defines a super-martingale. (Note $E[|S_n|] \le n$ and $E[|Z_n|] \le 2n$.)

Theorem (13.4: Azuma-Hoeffding inequality)

If Z_0, \ldots, Z_n is a (super-)martingale such that for all $k \ge 1$ there is some $c_k \ge 0$ such that $\Pr[|Z_k - Z_{k-1}| \le c_k] = 1$, then for all $t \ge 1$ and any $\lambda > 0$

$$\Pr[Z_t - Z_0 \ge \lambda] \le \exp\left[\frac{-\lambda^2}{2(\Sigma_{k=1}^t c_k)}\right].$$

Proof is similar to proof of Hoeffding's inequality (see Chap. 13 of [MU]).

Another variation on Hoeffding's inequality

Not Examinable.

There are *many many* variations of Chernoff-Hoeffding bounds. Here's another useful one (see Chap. 13 of [MU]):

Theorem (13.7: McDiarmid's Inequality)

Let X_1, \ldots, X_n be independent random variables, X_k taking values in $A_k \subseteq \mathbb{R}$, for each $k \in [n]$. Suppose that the (measurable) function $f : (\times_{k=1}^n A_k) \to \mathbb{R}$ satisfies

$$|f(\bar{x}) - f(\bar{x}')| \leq c_k$$

whenever \bar{x}, \bar{x}' only differ in their *k*-th coordinate. Define the random variable $Y = f[X_1, \dots, X_n]$. Then for any t > 0,

$$\Pr[|Y - E[Y]| \ge t] \le 2 \exp\left[\frac{-2t^2}{\sum_{k \in [n]} c_k^2}\right].$$

McDiarmid's inequality can be derived from the Azuma-Hoeffding inequality. (See Chapter 13 of [MU].)

References

- Chapter 4 of [MU] sections 4.1-4.5
- If you want to learn more about the rich subject of Martingales, and the Azuma-Hoeffding inequality, see Chapter 13 of [MU]. (But that chapter and content is not examinable in this course.)