Randomized Algorithms

Kousha Etessami

$$
\text { RA - Lecture } 8 \text { - slide } 1
$$

Recap: Chernoff Bounds (upper tail)

Poisson trials - sequence of Bernoulli variables X_{i} with varying p_{i} s.
Theorem (4.4)
Let X_{1}, \ldots, X_{n} be independent 0/1 Poisson trials such that $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ for all $i \in[n]$. Let $X=\sum_{i=1}^{n} X_{i}$, and $\mu=E[X]$. We have the following Chernoff bounds:

1. For any $\delta>0$,

$$
\operatorname{Pr}[X \geqslant(1+\delta) \mu] \leqslant\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

2. For any $0<\delta \leqslant 1$,

$$
\operatorname{Pr}[X \geqslant(1+\delta) \mu] \leqslant e^{-\mu \delta^{2} / 3}
$$

3. For $R \geqslant 6 \mu$,

$$
\operatorname{Pr}[X \geqslant R] \leqslant 2^{-R} .
$$

Recap: Chernoff Bounds (lower tail)

Theorem (4.5)
Let X_{1}, \ldots, X_{n} be independent 0/1 Poisson trials such that $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ for all $i \in[n]$. Let $X=\sum_{i=1}^{n} X_{i}$, and $\mu=E[X]$. For any $0<\delta<1$, we have the following Chernoff bounds:
1.

$$
\operatorname{Pr}[X \leqslant(1-\delta) \mu] \leqslant\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
$$

2.

$$
\operatorname{Pr}[X \leqslant(1-\delta) \mu] \leqslant e^{-\mu \delta^{2} / 2}
$$

- Proof is similar to Thm 4.4.
- Bound of (2.) is slightly better than the bound for $\geqslant(1+\delta) \mu$.

Recap: Concentration

Corollary (4.6)

Let X_{1}, \ldots, X_{n} be independent 0/1 Poisson trials such that $\operatorname{Pr}\left[X_{i}=1\right]=$ p_{i} for all $i \in[n]$. Let $X=\sum_{i=1}^{n} X_{i}$, and $\mu=E[X]=\sum_{i=1}^{n} p_{i}$. Then for any $\delta, 0<\delta<1$,

$$
\operatorname{Pr}[|X-\mu| \geqslant \delta \mu] \leqslant 2 e^{-\mu \delta^{2} / 3}
$$

- For almost all applications, we will want to work with such a symmetric version like the Corollary.
- We "threw away" a bit in moving from the $\left(\frac{e^{ \pm \delta}}{(1 \pm \delta)^{1 \pm \delta}}\right)^{\mu}$ versions, but they are tricky to work with.

Recap: Unbiased +1 / -1 variables

For unbiased variables, we can do better than $2 e^{-\mu \delta^{2} / 3}$ by switching to $+1 /-1$ variables.

Theorem (4.7)

Let X_{1}, \ldots, X_{n} be independent random variables with $\operatorname{Pr}\left[X_{i}=1\right]=1 / 2=$ $\operatorname{Pr}\left[X_{i}=-1\right]$ for all $i \in[n]$. Let $X=\sum_{k=1}^{n} X_{k}$. Note $\mu=E[X]=0$. Then for any $a>0$,

$$
\operatorname{Pr}[X \geqslant a] \leqslant e^{-a^{2} / 2 n} .
$$

Recap: Unbiased 0/1 variables

Consider Y_{1}, \ldots, Y_{n} such that $\operatorname{Pr}\left[Y_{i}=0\right]=\operatorname{Pr}\left[Y_{i}=1\right]=1 / 2$ for all $i \in[n]$. Define $X_{i}=2 Y_{i}-1$ for every $i \in[n]$. Then

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { if } Y_{i}=1 \\
-1 & \text { if } Y_{i}=0
\end{array}\right.
$$

Corollary (4.9, 4.10)
For $Y=\sum_{i=1}^{n} Y_{i}, X=\sum_{i=1}^{n} X_{i}$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[Y \geqslant \frac{n}{2}+a\right]=\operatorname{Pr}[X \geqslant 2 a] \leqslant e^{-2 a^{2} / n} \\
& \operatorname{Pr}\left[Y \leqslant \frac{n}{2}-a\right]=\operatorname{Pr}[X \leqslant-2 a] \leqslant e^{-2 a^{2} / n} .
\end{aligned}
$$

i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables X_{i} with a fixed constant parameter p, Chernoff bounds on their sum $X=\sum_{i=1}^{n} X_{i}$ yield that, roughly speaking, X has deviation from expectation

- $\Omega(\sqrt{n})$ with probability $O(1)$;
- $\Omega(\sqrt{n \ln n})$ with probability $O\left(n^{-c}\right)$;
- $\Omega(n)$ with probability $e^{-\Omega(n)}$.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0,1\}$). We consider the value of

$$
A \cdot \bar{b}=\bar{c},
$$

when $\bar{b} \in\{-1,+1\}^{m}$ (note \bar{c} will then be n-dimensional).
Goal is to find $\bar{b} \in\{-1,+1\}^{m}$ such that the value of $\|A \cdot \bar{b}\|_{\infty}=\max _{j=1}^{n}\left|c_{j}\right|$ is minimized.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0,1\}$). We consider the value of

$$
A \cdot \bar{b}=\bar{c},
$$

when $\bar{b} \in\{-1,+1\}^{m}$ (note \bar{c} will then be n-dimensional).
Goal is to find $\bar{b} \in\{-1,+1\}^{m}$ such that the value of $\|A \cdot \bar{b}\|_{\infty}=\max _{j=1}^{n}\left|c_{j}\right|$ is minimized.
Exact optimization is NP-hard.

Application: set balancing and "discrepency" minimization

We have an $n \times m$ binary matrix A (entries from $\{0,1\}$). We consider the value of

$$
A \cdot \bar{b}=\bar{c}
$$

when $\bar{b} \in\{-1,+1\}^{m}$ (note \bar{c} will then be n-dimensional).
Goal is to find $\bar{b} \in\{-1,+1\}^{m}$ such that the value of $\|A \cdot \bar{b}\|_{\infty}=\max _{j=1}^{n}\left|c_{j}\right|$ is minimized.
Exact optimization is NP-hard.
Randomly choosing b is already pretty good: choose $\bar{b} \in\{-1,+1\}^{m}$ u.a.r. by generating b_{i} independently and uniformly from $\{-1,+1\}$. We can show

Theorem (4.11)
For \bar{b} chosen u.a.r. from $\{-1,+1\}^{m}$,

$$
\operatorname{Pr}\left[\|A \bar{b}\|_{\infty} \geqslant \sqrt{4 m \ln (n)}\right] \leqslant \frac{2}{n} .
$$

$R A$ - Lecture 8 - slide 8

Set balancing: proof

- $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, every entry of $A \cdot \bar{b}$ has absolute value $\leqslant \sqrt{4 m \ln (n)}$.

Set balancing: proof

- $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, every entry of $A \cdot \bar{b}$ has absolute value $\leqslant \sqrt{4 m \ln (n)}$.
- There are n different entries of $\bar{c}=A \cdot \bar{b}$; we will show that for each entry, it is "too large" with probability $\leqslant \frac{2}{n^{2}}$. It then follows from the Union Bound that the probability that some entry is "too large" is \leqslant $n \cdot \frac{2}{n^{2}}=\frac{2}{n}$.

Set balancing: proof

- $\|\cdot\|_{\infty}$ is the absolute value of the largest entry of the tuple. We want to show that with high probability, every entry of $A \cdot \bar{b}$ has absolute value $\leqslant \sqrt{4 m \ln (n)}$.
- There are n different entries of $\bar{c}=A \cdot \bar{b}$; we will show that for each entry, it is "too large" with probability $\leqslant \frac{2}{n^{2}}$. It then follows from the Union Bound that the probability that some entry is "too large" is \leqslant $n \cdot \frac{2}{n^{2}}=\frac{2}{n}$.
- For row i of A, there are $k_{i} \leqslant m$ entries that are non-0 (i.e., 1). The absolute value of $A_{i} \cdot \bar{b}$ is the (absolute) weighted sum of these entries, randomly weighted by +1 or $-1 \ldots$ so we have k_{i} random trials of unbiased $+1 /-1$. Let $Y_{i}=\left|A_{i} \cdot \bar{b}\right|$ be the random variable representing this sum. Setting $a=\sqrt{4 m \ln (n)}$, the Chernoff bound in Thm 4.7 says

$$
\operatorname{Pr}\left[Y_{i} \geqslant \sqrt{4 m \ln (n)}\right] \leqslant 2 e^{-4 m \ln (n) / 2 k_{i}}=2 n^{-2 m / k_{i}} \leqslant \frac{2}{n^{2}}
$$

as required.

More on set balancing

This last result implies that for most \bar{b} we have $\|A \cdot \bar{b}\|_{\infty}=O(\sqrt{m \ln n})$, but better \bar{b} exists, at least if $m=n$:

Theorem (Spencer, 1985)
For a n-by-n $0 / 1$ matrix A, there exists $\bar{b} \in\{+1,-1\}^{n}$ such that

$$
\|A \cdot \bar{b}\|_{\infty} \leqslant 6 \sqrt{n} .
$$

This is tight up to constants. There exists A such that $\|A \cdot \bar{b}\|_{\infty}=\Omega(\sqrt{n})$ for any \bar{b}.

More on set balancing

This last result implies that for most \bar{b} we have $\|A \cdot \bar{b}\|_{\infty}=O(\sqrt{m \ln n})$, but better \bar{b} exists, at least if $m=n$:

Theorem (Spencer, 1985)
For a n-by-n $0 / 1$ matrix A, there exists $\bar{b} \in\{+1,-1\}^{n}$ such that

$$
\|A \cdot \bar{b}\|_{\infty} \leqslant 6 \sqrt{n} .
$$

This is tight up to constants. There exists A such that $\|A \cdot \bar{b}\|_{\infty}=\Omega(\sqrt{n})$ for any \bar{b}.

Spencer's result was non-constructive. Subsequently, efficient randomized polynomial-time algorithms to find such \bar{b} where discovered by Bansal (2010) and by Lovett and Meka (2012). These algorithms have (subsequently) been derandomized.

To learn more on this topic, see Chapter 13 of the following book:
N. Alon and J. Spencer, "The Probabilistic Method", 4th edition, 2016.

RA - Lecture 8 - slide 10

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D:\{0,1\}^{*} \rightarrow\{$ "Yes", "No" $\}$.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm, \mathcal{M}, with 2 -sided error, that on input $x \in\{0,1\}^{*}$ of length $n=|x|$, runs in time $q(n)$, for some polynomial $q(\cdot)$, and such that for all $x \in\{0,1\}^{*}$,

$$
\operatorname{Pr}[M(x)=D(x)] \geqslant \frac{3}{4}
$$

(N.B. here $3 / 4$ can be replaced with any $p=\frac{1}{2}+\epsilon$, where $\epsilon \in \Omega\left(\frac{1}{|x|}\right)$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, M^{\prime}, such that

$$
\operatorname{Pr}\left[M^{\prime}(x)=D(x)\right] \geqslant 1-\frac{1}{2^{n}}
$$

Can we do it?

RA - Lecture 8 - slide 11

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D:\{0,1\}^{*} \rightarrow\{$ "Yes", "No" $\}$.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm, \mathcal{M}, with 2 -sided error, that on input $x \in\{0,1\}^{*}$ of length $n=|x|$, runs in time $q(n)$, for some polynomial $q(\cdot)$, and such that for all $x \in\{0,1\}^{*}$,

$$
\operatorname{Pr}[M(x)=D(x)] \geqslant \frac{3}{4}
$$

(N.B. here $3 / 4$ can be replaced with any $p=\frac{1}{2}+\epsilon$, where $\epsilon \in \Omega\left(\frac{1}{|x|}\right)$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, \mathcal{M}^{\prime}, such that

$$
\operatorname{Pr}\left[M^{\prime}(x)=D(x)\right] \geqslant 1-\frac{1}{2^{n}}
$$

Can we do it?
Hint: Yes, we can, with a simple algorithm, and we can prove its correctness using Chernoff bounds.

Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, $D:\{0,1\}^{*} \rightarrow\{$ "Yes", "No" $\}$.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm, \mathcal{M}, with 2 -sided error, that on input $x \in\{0,1\}^{*}$ of length $n=|x|$, runs in time $q(n)$, for some polynomial $q(\cdot)$, and such that for all $x \in\{0,1\}^{*}$,

$$
\operatorname{Pr}[M(x)=D(x)] \geqslant \frac{3}{4}
$$

(N.B. here $3 / 4$ can be replaced with any $p=\frac{1}{2}+\epsilon$, where $\epsilon \in \Omega\left(\frac{1}{|x|}\right)$.)

Question: Suppose we want to devise a new 2-sided error Monte Carlo randomized polynomial time algorithm, \mathcal{M}^{\prime}, such that

$$
\operatorname{Pr}\left[M^{\prime}(x)=D(x)\right] \geqslant 1-\frac{1}{2^{n}}
$$

Can we do it?
Hint: Yes, we can, with a simple algorithm, and we can prove its correctness using Chernoff bounds.

Error reduction for 2-sided error algorithms

Algorithm M^{\prime} : On input x, with $n=|x|$, repeatedly run $M(x)$, a total of $20 n$ times. Let $y_{1}, \ldots, y_{20 n}$ denote the sequence of outputs of the different (independent) runs of $\mathcal{M}(x)$. Our algorithm $M^{\prime}(x)$ will answer "Yes" if a majority, i.e., $>10 n$, of the $20 n$ different runs answered "Yes". Otherwise, it will answer "No".
Let the random variables $X_{1}, \ldots, X_{20 n} \in\{0,1\}$ be defined as follows:

$$
X_{i}= \begin{cases}1 & \text { if } y_{i}=D(x) \\ 0 & \text { otherwise }\end{cases}
$$

Note that $X_{1}, \ldots, X_{20 n}$ are mutually independent, and that $\operatorname{Pr}\left[X_{i}=1\right]=3 / 4$, for all $i \in[20 n]$.
Let $X=\sum_{i=1}^{20 n} X_{i}$. Note that $\mu=E[X]=\frac{3}{4}(20 n)=15 n$.
Note that the new algorithm M^{\prime} answers incorrectly only if $X \leqslant 10 n$.
We want to bound the probability of this bad event.
We will use Chernoff bounds.

Error reduction for 2-sided error algorithms - proof

We will use Chernoff bounds for the lower tail (Theorem 4.5(2.)), which tells us that for any $0<\delta<1$,

$$
\operatorname{Pr}[X \leqslant(1-\delta) \mu] \leqslant e^{-\mu \delta^{2} / 2}
$$

Let $\delta:=\frac{1}{3}$. Note that $(1-\delta) \mu=\frac{2}{3} \cdot 15 n=10 n$.
Hence we have:

$$
\operatorname{Pr}[X \leqslant 10 n] \leqslant e^{-15 n(1 / 3)^{2} / 2}=e^{-\frac{15}{18} n} \leqslant 2^{-n} .
$$

(The last inequality follows because $e^{\frac{15}{18}}=2.300975 \ldots$..)
This completes the proof that the new algorithm M^{\prime} has error probability at most $\frac{1}{2^{n}}$. Note \mathcal{M}^{\prime} has polynomial running time $(20 n) \cdot q(n) . \square$

Hoeffding's inequality - beyond Bernoulli

Chernoff bounds, as given, only work for sums of Bernoulli r.v.'s. What if allow sums of real-valued r.v's, $X_{i} \in[a, b]$?
Theorem (4.12, Hoeffding's inequality)
Let X_{1}, \ldots, X_{n} be independent r.v.'s with $E\left[X_{i}\right]=\mu$ and $\operatorname{Pr}\left[a \leqslant X_{i} \leqslant b\right]=1$. Then,

$$
\operatorname{Pr}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geqslant \varepsilon\right] \leqslant 2 e^{-2 n \varepsilon^{2} /(b-a)^{2}}
$$

The proof also goes through the moment generating function $\mathrm{E}\left[e^{t X}\right]$.
A slightly more general form of the theorem is:
Theorem (4.14, Hoeffding's inequality)
Let X_{1}, \ldots, X_{n} be independent r.v.'s with $E\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Pr}\left[a_{i} \leqslant X_{i} \leqslant b_{i}\right]=1$. Then,

$$
\operatorname{Pr}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{1}{n} \sum_{i=1}^{n} \mu_{i}\right| \geqslant \varepsilon\right] \leqslant 2 e^{-\frac{2 n^{2} \varepsilon^{2}}{\left.\sum_{i=1}^{n} b_{i}-a_{i}\right)^{2}}}
$$

$R A$ - Lecture 8 - slide 14

Not necessarily independent variables:

Martingales and the Azuma-Hoeffding inequality

NOT Examinable. To learn more, see Chap. 13 of [MU] on "Martingales". A sequence of r.v.'s $Z_{0}, Z_{1}, Z_{2}, \ldots$ such that $\mathrm{E}\left[\left|Z_{i}\right|\right]<\infty$ for all $i \geqslant 0$, is called a martingale (respectively, a super-martingale) if $\mathrm{E}\left[Z_{i+1} \mid Z_{0}, \ldots, Z_{i}\right]=Z_{i}$ (respectively, if $\mathrm{E}\left[Z_{i+1} \mid Z_{0}, \ldots, Z_{i}\right] \leqslant Z_{i}$) with probability 1 , for all $i \geqslant 0$.
Example: let $X_{1}, X_{2}, X_{3}, \ldots$ be i.i.d. r.v.'s, $X_{i} \in\{-1,+1\}$, with $\operatorname{Pr}\left[X_{i}=+1\right]=$ p, for all i. Let $q=(1-p)$. Let $S_{n}:=\sum_{i=1}^{n} X_{i} ; S_{0}:=0$. Let $Z_{n}:=S_{n}-n(p-q)$. Then $Z_{0}, Z_{1}, Z_{2}, \ldots$ defines a martingale. If $p \leqslant q$, then $S_{0}, S_{1}, S_{2}, \ldots$ defines a super-martingale. (Note $\mathrm{E}\left[\left|S_{n}\right|\right] \leqslant n$ and $\mathrm{E}\left[\left|Z_{n}\right|\right] \leqslant 2 n$.)
Theorem (13.4: Azuma-Hoeffding inequality)
If Z_{0}, \ldots, Z_{n} is a (super-)martingale such that for all $k \geqslant 1$ there is some $c_{k} \geqslant 0$ such that $\operatorname{Pr}\left[\left|Z_{k}-Z_{k-1}\right| \leqslant c_{k}\right]=1$, then for all $t \geqslant 1$ and any $\lambda>0$

$$
\operatorname{Pr}\left[Z_{t}-Z_{0} \geqslant \lambda\right] \leqslant \exp \left[\frac{-\lambda^{2}}{2\left(\sum_{k=1}^{t} c_{k}\right)}\right]
$$

Proof is similar to proof of Hoeffding's inequality (see Chap. 13 of [MU]).
$R A$ - Lecture 8 - slide 15

Another variation on Hoeffding's inequality

Not Examinable.

There are many many variations of Chernoff-Hoeffding bounds.
Here's another useful one (see Chap. 13 of [MU]):
Theorem (13.7: McDiarmid's Inequality)
Let X_{1}, \ldots, X_{n} be independent random variables, X_{k} taking values in $A_{k} \subseteq \mathbb{R}$, for each $k \in[n]$. Suppose that the (measurable) function $f:\left(X_{k=1}^{n} A_{k}\right) \rightarrow \mathbb{R}$ satisfies

$$
\left|f(\bar{x})-f\left(\bar{x}^{\prime}\right)\right| \leqslant c_{k}
$$

whenever $\bar{x}, \bar{x}^{\prime}$ only differ in their k-th coordinate. Define the random variable $Y=f\left[X_{1}, \ldots, X_{n}\right]$. Then for any $t>0$,

$$
\operatorname{Pr}[|Y-E[Y]| \geqslant t] \leqslant 2 \exp \left[\frac{-2 t^{2}}{\sum_{k \in[n]} c_{k}^{2}}\right]
$$

McDiarmid's inequality can be derived from the Azuma-Hoeffding inequality. (See Chapter 13 of [MU].)

RA - Lecture 8 - slide 16

References

- Chapter 4 of [MU] sections 4.1-4.5
- If you want to learn more about the rich subject of Martingales, and the Azuma-Hoeffding inequality, see Chapter 13 of [MU]. (But that chapter and content is not examinable in this course.)

