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Recap: Cherno� Bounds (upper tail)
Poisson trials - sequence of Bernoulli variables Xi with varying pis.

Theorem (4.4)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that PrrXi “ 1s “ pi for
all i P rns. Let X “

řn
i“1 Xi , and µ “ ErX s. We have the following Cherno�

bounds:

1. For any δ ą 0,

PrrX ě p1` δqµs ď
ˆ

eδ

p1` δq1`δ

˙µ

;

2. For any 0 ă δ ď 1,

PrrX ě p1` δqµs ď e´µδ
2
{3;

3. For R ě 6µ,
PrrX ě Rs ď 2´R.
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Recap: Cherno� Bounds (lower tail)

Theorem (4.5)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that PrrXi “ 1s “ pi for
all i P rns. Let X “

řn
i“1 Xi , and µ “ ErX s. For any 0 ă δ ă 1, we have the

following Cherno� bounds:

1.

PrrX ď p1´ δqµs ď
ˆ

e´δ

p1´ δq1´δ

˙µ

;

2.
PrrX ď p1´ δqµs ď e´µδ

2
{2;

§ Proof is similar to Thm 4.4.

§ Bound of (2.) is slightly be�er than the bound for ě p1` δqµ.
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Recap: Concentration

Corollary (4.6)
Let X1, . . . ,Xn be independent 0/1 Poisson trials such that PrrXi “ 1s “
pi for all i P rns. Let X “

řn
i“1 Xi , and µ “ ErX s “

řn
i“1 pi . Then for

any δ, 0 ă δ ă 1,

Prr|X ´ µ| ě δµs ď 2e´µδ
2{3.

§ For almost all applications, we will want to work with such a
symmetric version like the Corollary.

§ We “threw away” a bit in moving from the
´

e˘δ

p1˘δq1˘δ

¯µ
versions,

but they are tricky to work with.
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Recap: Unbiased `1{ ´ 1 variables

For unbiased variables, we can do be�er than 2e´µδ
2
{3 by switching to +1/-1

variables.

Theorem (4.7)
Let X1, . . . ,Xn be independent random variables with PrrXi “ 1s “ 1{2 “
PrrXi “ ´1s for all i P rns. Let X “

řn
k“1 Xk . Note µ “ ErX s “ 0. Then for

any a ą 0,
PrrX ě as ď e´a2{2n.
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Recap: Unbiased 0{1 variables

Consider Y1, . . . ,Yn such that PrrYi “ 0s “ PrrYi “ 1s “ 1{2 for all i P rns.
Define Xi “ 2Yi ´ 1 for every i P rns. Then

Xi “

"

1 if Yi “ 1
´1 if Yi “ 0

Corollary (4.9, 4.10)
For Y “

řn
i“1 Yi , X “

řn
i“1 Xi , we have

PrrY ě n
2 ` as “ PrrX ě 2as ď e´2a2{n;

PrrY ď n
2 ´ as “ PrrX ď ´2as ď e´2a2{n.
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i.i.d. Bernoulli variables

For independent identically distributed (i.i.d.) Bernoulli variables Xi with
a fixed constant parameter p, Cherno� bounds on their sum X “

řn
i“1 Xi

yield that, roughly speaking, X has deviation from expectation

§ Ωp
?
nq with probability Op1q;

§ Ωp
?
n ln nq with probability Opn´cq;

§ Ωpnq with probability e´Ωpnq.
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Application: set balancing and “discrepency” minimization

We have an n ˆ m binary matrix A (entries from t0, 1u). We consider the
value of

A ¨ b̄ “ c̄,

when b̄ P t´1,`1um (note c̄ will then be n-dimensional).

Goal is to find b̄ P t´1,`1um such that the value of ‖A ¨ b̄‖8 “ maxnj“1 |cj|
is minimized.

Exact optimization is NP-hard.

Randomly choosing b is already pre�y good: choose b̄ P t´1,`1um u.a.r. by
generating bi independently and uniformly from t´1,`1u. We can show

Theorem (4.11)
For b̄ chosen u.a.r. from t´1,`1um,

Prr‖Ab̄‖8 ě
a

4m lnpnqs ď
2
n
.
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Set balancing: proof

§ ‖¨‖8 is the absolute value of the largest entry of the tuple. We want to
show that with high probability, every entry of A ¨ b̄ has absolute value
ď
a

4m lnpnq.

§ There are n di�erent entries of c̄ “ A ¨ b̄; we will show that for each
entry, it is “too large” with probability ď 2

n2 . It then follows from the
Union Bound that the probability that some entry is “too large” is ď
n ¨ 2

n2 “
2
n .

§ For row i of A, there are ki ď m entries that are non-0 (i.e., 1). The
absolute value of Ai ¨ b̄ is the (absolute) weighted sum of these entries,
randomly weighted by +1 or -1 . . . so we have ki random trials of un-
biased +1/-1. Let Yi “ |Ai ¨ b̄| be the random variable representing this
sum. Se�ing a “

a

4m lnpnq, the Cherno� bound in Thm 4.7 says

PrrYi ě
a

4m lnpnqs ď 2e´4m lnpnq{2ki “ 2n´2m{ki ď
2
n2
,

as required. 2
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More on set balancing

This last result implies that for most b̄ we have }A ¨ b̄}8 “ Op
?
m ln nq, but

be�er b̄ exists, at least if m “ n:

Theorem (Spencer, 1985)
For a n-by-n 0{1 matrix A, there exists b̄ P t`1,´1un such that

}A ¨ b̄}8 ď 6
?
n.

This is tight up to constants. There exists A such that }A ¨ b̄}8 “ Ωp
?
nq

for any b̄.

Spencer’s result was non-constructive. Subsequently, e�icient randomized
polynomial-time algorithms to find such b̄where discovered byBansal (2010)
and by Love� and Meka (2012). These algorithms have (subsequently) been
derandomized.

To learn more on this topic, see Chapter 13 of the following book:
N. Alon and J. Spencer, “The Probabilistic Method”, 4th edition, 2016.
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Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, D : t0, 1u˚ Ñ t“Yes”, “No”u.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm,
M, with 2-sided error, that on input x P t0, 1u˚ of length n “ |x|, runs in
time qpnq, for some polynomial qp¨q, and such that for all x P t0, 1u˚,

PrrMpxq “ Dpxqs ě
3
4
.

(N.B. here 3{4 can be replaced with any p “ 1
2 ` ε, where ε P Ωp

1
|x| q.)

�estion: Suppose we want to devise a new 2-sided error Monte Carlo
randomized polynomial time algorithm, M 1, such that

PrrM 1pxq “ Dpxqs ě 1´
1
2n
.

Can we do it?

Hint: Yes, we can, with a simple algorithm, and we can prove its correctness
using Cherno� bounds.

RA – Lecture 8 – slide 11



Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, D : t0, 1u˚ Ñ t“Yes”, “No”u.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm,
M, with 2-sided error, that on input x P t0, 1u˚ of length n “ |x|, runs in
time qpnq, for some polynomial qp¨q, and such that for all x P t0, 1u˚,

PrrMpxq “ Dpxqs ě
3
4
.

(N.B. here 3{4 can be replaced with any p “ 1
2 ` ε, where ε P Ωp

1
|x| q.)

�estion: Suppose we want to devise a new 2-sided error Monte Carlo
randomized polynomial time algorithm, M 1, such that

PrrM 1pxq “ Dpxqs ě 1´
1
2n
.

Can we do it?
Hint: Yes, we can, with a simple algorithm, and we can prove its correctness
using Cherno� bounds.

RA – Lecture 8 – slide 11



Application: Monte Carlo algorithms with 2-sided error

Consider a decision problem, D : t0, 1u˚ Ñ t“Yes”, “No”u.
Suppose we have a (Monte Carlo) randomized polynomial time algorithm,
M, with 2-sided error, that on input x P t0, 1u˚ of length n “ |x|, runs in
time qpnq, for some polynomial qp¨q, and such that for all x P t0, 1u˚,

PrrMpxq “ Dpxqs ě
3
4
.

(N.B. here 3{4 can be replaced with any p “ 1
2 ` ε, where ε P Ωp

1
|x| q.)

�estion: Suppose we want to devise a new 2-sided error Monte Carlo
randomized polynomial time algorithm, M 1, such that

PrrM 1pxq “ Dpxqs ě 1´
1
2n
.

Can we do it?
Hint: Yes, we can, with a simple algorithm, and we can prove its correctness
using Cherno� bounds.

RA – Lecture 8 – slide 11



Error reduction for 2-sided error algorithms

Algorithm M 1: On input x , with n “ |x|, repeatedly run Mpxq, a total of
20n times. Let y1, . . . , y20n denote the sequence of outputs of the di�erent
(independent) runs of Mpxq. Our algorithm M 1pxq will answer “Yes” if a
majority, i.e., ą 10n, of the 20n di�erent runs answered “Yes”. Otherwise, it
will answer “No”.
Let the random variables X1, . . . ,X20n P t0, 1u be defined as follows:

Xi “

"

1 if yi “ Dpxq
0 otherwise

Note that X1, . . . ,X20n aremutually independent, and that PrrXi “ 1s “ 3{4,
for all i P r20ns.

Let X “
ř20n

i“1 Xi . Note that µ “ ErX s “ 3
4 p20nq “ 15n.

Note that the new algorithm M 1 answers incorrectly only if X ď 10n.
We want to bound the probability of this bad event.
We will use Cherno� bounds.
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Error reduction for 2-sided error algorithms – proof

We will use Cherno� bounds for the lower tail (Theorem 4.5(2.) ),
which tells us that for any 0 ă δ ă 1,

PrrX ď p1´ δqµs ď e´µδ
2{2

Let δ :“ 1
3 . Note that p1´ δqµ “

2
3 ¨ 15n “ 10n.

Hence we have:

PrrX ď 10ns ď e´15np1{3q
2{2 “ e´

15
18n ď 2´n.

(The last inequality follows because e
15
18 “ 2.300975 . . ..)

This completes the proof that the new algorithmM 1 has error proba-
bility at most 1

2n . NoteM
1 has polynomial running time p20nq ¨qpnq.2
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Hoe�ding’s inequality — beyond Bernoulli
Cherno� bounds, as given, only work for sums of Bernoulli r.v.’s. What if
allow sums of real-valued r.v’s, Xi P ra, bs?

Theorem (4.12, Hoe�ding’s inequality)
Let X1, . . . ,Xn be independent r.v.’s with ErXis “ µ and Prra ď Xi ď bs “ 1.
Then,

Pr
„
ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ě ε



ď 2e´2nε2{pb´aq2 .

The proof also goes through the moment generating function EretX s.
A slightly more general form of the theorem is:

Theorem (4.14, Hoe�ding’s inequality)
Let X1, . . . ,Xn be independent r.v.’s with ErXis “ µi and Prrai ď Xi ď bis “ 1.
Then,

Pr
„
ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1

Xi ´
1
n

n
ÿ

i“1

µi

ˇ

ˇ

ˇ

ˇ

ě ε



ď 2e
´ 2n2ε2

řn
i“1pbi´aiq

2
.
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Not necessarily independent variables:
Martingales and the Azuma-Hoe�ding inequality

NOT Examinable. To learn more, see Chap. 13 of [MU] on “Martingales”.

A sequence of r.v.’s Z0,Z1,Z2, . . . such that Er|Zi|s ă 8 for all i ě 0, is called
a martingale (respectively, a super-martingale) if ErZi`1 | Z0, . . . ,Zis “ Zi

(respectively, if ErZi`1 | Z0, . . . ,Zis ď Zi) with probability 1, for all i ě 0.

Example: let X1,X2,X3, . . . be i.i.d. r.v.’s, Xi P t´1,`1u, with PrrXi “ `1s “
p, for all i. Let q “ p1´pq. Let Sn :“

řn
i“1 Xi ; S0 :“ 0. Let Zn :“ Sn´npp´qq.

Then Z0,Z1,Z2, . . . defines a martingale. If p ď q, then S0, S1, S2, . . . defines
a super-martingale. (Note Er|Sn|s ď n and Er|Zn|s ď 2n.)

Theorem (13.4: Azuma-Hoe�ding inequality)
If Z0, . . . ,Zn is a (super-)martingale such that for all k ě 1 there is some ck ě 0
such that Prr|Zk ´ Zk´1| ď cks “ 1, then for all t ě 1 and any λ ą 0

PrrZt ´ Z0 ě λs ď exp
„

´λ2

2pΣt
k“1ckq



.

Proof is similar to proof of Hoe�ding’s inequality (see Chap. 13 of [MU]).
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Another variation on Hoe�ding’s inequality

Not Examinable.
There are many many variations of Cherno�-Hoe�ding bounds.
Here’s another useful one (see Chap. 13 of [MU]):

Theorem (13.7: McDiarmid’s Inequality)
Let X1, . . . ,Xn be independent random variables, Xk taking values in Ak Ď R ,
for each k P rns. Suppose that the (measurable) function f :

`
Śn

k“1 Ak
˘

Ñ R
satisfies

|f px̄q ´ f px̄ 1q| ď ck

whenever x̄, x̄ 1 only di�er in their k-th coordinate.
Define the random variable Y “ f rX1, . . . ,Xns. Then for any t ą 0,

Prr|Y ´ ErY s| ě ts ď 2 exp

«

´2t2
ř

kPrns c
2
k

ff

.

McDiarmid’s inequality can be derived from the Azuma-Hoe�ding inequal-
ity. (See Chapter 13 of [MU].)
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References

§ Chapter 4 of [MU] sections 4.1-4.5

§ If you want to learn more about the rich subject of Martingales, and
the Azuma-Hoe�ding inequality, see Chapter 13 of [MU]. (But that
chapter and content is not examinable in this course.)
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