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The Birthday Problem

Birthday problem
There are 30 people in a room. I am willing to bet you that “at least
two people in the room have the same birthday”.

Should you take my bet? (I o�er even odds.)

In order words, you have to calculate:
is there at least 1/2 probability that no two people will have the
same birthday in a room with 30 people?
(We are implicitly assuming that these people’s birthdays are
independent and uniformly distributed throughout the 365(+1) days
of the year, taking into account leap years.)
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Toward a solution to the Birthday problem:
�estion: What is the probability, pm, that m people in a room all
have di�erent birthdays?

We can equate the birthdays of m people to a list (b1, . . . , bm), with
each bi ∈ {1, . . . , 366}.

We are assuming each list in B = {1, . . . , 366}m is equally likely.

Note that |B| = 366m. What is the size of
A = {(b1, . . . , bm) ∈ B | bi 6= bj for all i 6= j, i, j ∈ {1, . . . ,m}} ?

This is simply the # of m-permutations from a set of size 366.
Thus |A| = 366 · (366− 1) . . . (366− (m− 1)).

Thus, pm = |A|
|B| =

∏m
i=1

366−i+1
366 =

∏m
i=1(1−

i−1
366 ).

By brute-force calculation, p30 = 0.2947. Thus, the probability that at
least two people do have the same birthday in a room with 30 people
is 1− p30 = 0.7053.
So, you shouldn’t have taken my bet! Not even for 23 people in a
room, because 1− p23 = 0.5063. But 1− p22 = 0.4745.
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A general result underlying the birthday paradox: Balls in Bins

Theorem: Suppose that each of m ≥ 1 balls is independently and
uniformly at random placed in one of n ≥ 1 bins. If

m ≥ (1.1775 ·
√
n) + 1

then the probability that two balls go into the same bin is greater
than 1/2.
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Proof:
The probability that m balls all go in di�erent bins, when the bin for
each ball is chosen independently and u.a.r., from among n bins, is:

m−1∏
i=1

(1−
i
n
) ≤

m−1∏
i=1

e−(i/n) = e−
1
n

∑m−1
i=1 i = e−

m(m−1)
2n

So we want m to be big enough so that e−
m(m−1)

2n < 1/2.
Taking logs, and negating, this is equivalent to

m(m− 1)
2n

> ln 2 ⇐⇒ m(m− 1) > (2 · ln 2) · n

Thus, since m(m− 1) > (m− 1)2, it su�ices if

(m− 1)2 ≥ (2 · ln 2) · n ⇐⇒ (m− 1) ≥
√

(2 · ln 2) ·
√
n

Thus, since
√

(2 ln 2) = 1.177410 . . . ≤ 1.1775, it su�ices if:

m ≥ (1.1775 ·
√
n) + 1.
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Note that this implies that:

I when there are n = 366 bins (possible birthdays),

I if there were at least m = 1.1775 ·
√
366 + 1 = 23.5269 balls (people),

then we have probability≥ 1/2 that two balls (two people) share a bin
(share their birthday).
This is not quite as good as the bound we obtained for 366 by exhaus-
tive calculation, which showed 23 people su�ice to have probability
≥ 1/2, of two people with the same birthday, but it is close. (The
bound in the proof of the theorem is a bit loose, because for simplicity
we used the inequality m(m− 1) > (m− 1)2.)
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Balls into Bins
I m balls, n bins, and balls thrown uniformly at random and indepen-

dently into bins (usually one at a time).

I The bins have no upper limit on capacity.

I Can be viewed as a (uniformly) random function, f : [m] → [n].

I Commonmodel of random assignment/allocation, and their e�ects on
overall load and load balance.

I Also crucial for analysis of hashing and (idealized) hash functions.

Many related questions:

I How many balls do we need (in expectation) to cover all bins?

(Coupon collector, surjective mapping)

I How many balls will lead (with probability > 1/2) to a collision?

(Birthday paradox, injective mapping)

I What is the (expected) maximum load of any bin?

(Load balancing)
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Balls into Bins: maximum load
Goal: bound the maximum load of the “Balls into Bins” model in the case
when m = n. For any bin i ∈ [n], its load, denoted Xi , has expectation

E[Xi] =

n∑
j=1

E[Xij] = n · 1
n
= 1.

Let Xi > T be our “bad events” for some threshold T . Then to show that
whp everyone’s load is ≤ T , via the union bound, we need to at least upper
bound the bad event like this

Pr[Xi > T ] ≤ 1
n2
.

Markov’s inequality gives Pr[Xi > T ] ≤ 1
T , but is not good enough.

Nor is Chebyshev.

Suitable Cherno� bounds for “negatively correlated” r.v.’s can be made to
work here, since Xi’s are “negatively correlated”, but we didn’t state such
Cherno� bounds.
Instead, we will do a quicker “ad hoc” proof for the upper bound.
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Balls into Bins maximum load

Lemma (5.1)
Let n balls be thrown independently and uniformly at random into n bins.
Then for su�iciently large n, the maximum load is bounded above by 3 ln(n)

ln ln(n)
with probability at least 1− 1

n .

Proof: The probability that bin i receives ≥ M balls is at most(
n
M

)(
1
n

)M

.

But
( n
M

)
= n!

M!(n−M)! satisfies (e.g., using Stirling’s approximation1 of n!)( n
M

)M
≤
(
n
M

)
≤ nM

M!
≤
(en
M

)M
.

Hence, bin i gets ≥ M balls with probability at most(
n
M

)
(
1
n
)M ≤

( en
nM

)M
=
( e
M

)M
.

1Stirling:
√
2πn

(
n
e

)n · e1/(12n+1) ≤ n! ≤
√
2πn

(
n
e

)n · e1/(12n).
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Bin i gets ≥ M bins with probability at most

(
e
M

)M
.

Let M := 3 ln(n)
ln ln(n) . Then the probability that any bin gets ≥ M balls is (using

the Union bound) at most

n ·
(
e · ln ln(n)
3 ln(n)

) 3 ln(n)
ln ln(n)

≤ n ·
(
ln ln(n)
ln(n)

) 3 ln(n)
ln ln(n)

= eln(n)
(
ln ln(n)
ln(n)

) 3 ln(n)
ln ln(n)

.

We can rewrite this as

eln(n)
(
eln ln ln(n)−ln ln(n)

) 3 ln(n)
ln ln(n)

= eln(n)
(
e−3 ln(n)+3 ln(n) ln ln ln(n)

ln ln(n)

)
.

= e−2 ln(n)+3 ln(n) ln ln ln(n)
ln ln(n)
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Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the ln(n)’s in the exponents, and evaluating, we have

e−2 ln(n) · e3
ln(n) ln ln ln(n)

ln ln(n) = n−2 · n3
ln ln ln(n)
ln ln(n) .

If we take n “su�iciently large” (n ≥ ee
e4

will do it), then ln ln ln(n)
ln ln(n) ≤ 1/3,

hence the probability that some bin has ≥ M balls is at most

1
n
.

We can also derive an essentially matching lower pound (using “Poisson
approximation”), to show that “with high probability” there will be a bin
withΩ( ln(n)

ln ln(n) ) balls in it.
We will not prove this (see section 5.3-5.4 of Chapter 5 of [MU]).

RA – Lecture 9 – slide 11



Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the ln(n)’s in the exponents, and evaluating, we have

e−2 ln(n) · e3
ln(n) ln ln ln(n)

ln ln(n) = n−2 · n3
ln ln ln(n)
ln ln(n) .

If we take n “su�iciently large” (n ≥ ee
e4

will do it), then ln ln ln(n)
ln ln(n) ≤ 1/3,

hence the probability that some bin has ≥ M balls is at most

1
n
.

We can also derive an essentially matching lower pound (using “Poisson
approximation”), to show that “with high probability” there will be a bin
withΩ( ln(n)

ln ln(n) ) balls in it.
We will not prove this (see section 5.3-5.4 of Chapter 5 of [MU]).

RA – Lecture 9 – slide 11



Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the ln(n)’s in the exponents, and evaluating, we have

e−2 ln(n) · e3
ln(n) ln ln ln(n)

ln ln(n) = n−2 · n3
ln ln ln(n)
ln ln(n) .

If we take n “su�iciently large” (n ≥ ee
e4

will do it), then ln ln ln(n)
ln ln(n) ≤ 1/3,

hence the probability that some bin has ≥ M balls is at most

1
n
.

We can also derive an essentially matching lower pound (using “Poisson
approximation”), to show that “with high probability” there will be a bin
withΩ( ln(n)

ln ln(n) ) balls in it.
We will not prove this (see section 5.3-5.4 of Chapter 5 of [MU]).

RA – Lecture 9 – slide 11



Application to Hashing

I An “ideal” hash function should behave like a random function f :
[m] → [n].

I Much research has been done on developing “good” hash functions
that “appear” random.

I If we simply assume the hash function behaves randomly, we have
precisely the balls-in-bins model.

I Maximum load tells us the maximum number of inputs that hash to
the same value. This also defines the limit of the lookup time when we
hash a new value.
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The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins (two
di�erent idealized hash functions), and choose the one with the lower load.

Surprisingly, the maximum load in this case is ln ln n
ln 2 ±O(1) with probability

1− o(1/n).

Note the load reduces from Θ
( ln n
ln ln n

)
to Θ (ln ln n).

More generally, if we have d ≥ 2 choices, the resulting maximum load is
ln ln n
ln d ± O(1) with probability 1− o(1/n).

This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).

Chapter 17 also discusses Cuckoo Hashing, a clever variation of 2-choice
hashing, which has been highly successful in practice.

But we do not expect you to know the content of Chapter 17.
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