Randomized Algorithms
Lecture 9: the birthday paradox, and balls in bins

Kousha Etessami

RA - Lecture 9 - slide 1

The Birthday Problem

Birthday problem
There are 30 people in a room. | am willing to bet you that “at least
two people in the room have the same birthday”.

Should you take my bet? (I offer even odds.)

RA - Lecture 9 — slide 2

The Birthday Problem

Birthday problem

There are 30 people in a room. | am willing to bet you that “at least
two people in the room have the same birthday”.

Should you take my bet? (I offer even odds.)

In order words, you have to calculate:

is there at least 1/2 probability that no two people will have the
same birthday in a room with 30 people?

(We are implicitly assuming that these people’s birthdays are
independent and uniformly distributed throughout the 365(+1) days
of the year, taking into account leap years.)

RA - Lecture 9 - slide 2

Toward a solution to the Birthday problem:

Question: What is the probability, p,,, that m people in a room all
have different birthdays?

RA - Lecture 9 — slide 3

Toward a solution to the Birthday problem:

Question: What is the probability, p,,, that m people in a room all
have different birthdays?
We can equate the birthdays of m people to a list (by,..., by), with
each b; € {1,...,366}.
We are assuming each list in B ={1,...,366}™ is equally likely.
Note that |B| = 366™. What is the size of

A={(b1,...,bm) € B| bj # bjforalli # j,i,j€{1,...,m}} ?
This is simply the # of m-permutations from a set of size 366.
Thus IAl = 366 - (366 — 1) ... (366 — (m— 1)).

Thus, pp, = % =117, 3663gé+1 =150 - %)'

By brute-force calculation, p3p = 0.2947. Thus, the probability that at
least two people do have the same birthday in a room with 30 people
is 1— psg = 0.7053.

So, you shouldn’t have taken my bet! Not even for 23 people in a
room, because 1— py3 = 0.5063. But 1 — p;; = 0.4745.

RA - Lecture 9 — slide 3

A general result underlying the birthday paradox: Balls in Bins

Theorem: Suppose that each of m > 1 balls is independently and
uniformly at random placed in one of n > 1 bins. If

m > (1.1775 - /n) + 1

then the probability that two balls go into the same bin is greater
than 1/2.

RA - Lecture 9 - slide 4

Proof:
The probability that m balls all go in different bins, when the bin for
each ball is chosen independently and u.a.r.,, from among n bins, is:

m—1

— . m— (1

1 1 m(m—
| |]_7 | | —(i/n) —e n 7”1’ = e
i=1 i=1

m(m—1)
So we want m to be big enough so that e~ = "< 1/2.
Taking logs, and negating, this is equivalent to

mm=1) 2 e mm—1)> (2-1n2) -

2n
Thus, since m(m — 1) > (m— 1)?, it suffices if
(m—1)?%2>(2-In2)-n & (m—1)>+/(2-In2)-+y/n
Thus, since v/(2In2) = 1.177410... < 1.1775, it suffices if:
m> (11775 -y/n) + 1. [

RA - Lecture 9 — slide 5

Note that this implies that:
» when there are n = 366 bins (possible birthdays),

> if there were at least m = 1.1775 - /366 + 1 = 23.5269 balls (people),
then we have probability > 1/2 that two balls (two people) share a bin
(share their birthday).
This is not quite as good as the bound we obtained for 366 by exhaus-
tive calculation, which showed 23 people suffice to have probability
> 1/2, of two people with the same birthday, but it is close. (The
bound in the proof of the theorem is a bit loose, because for simplicity
we used the inequality m(m — 1) > (m— 1)2)

RA - Lecture 9 — slide 6

Balls into Bins
» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).
» The bins have no upper limit on capacity.
» Can be viewed as a (uniformly) random function, f : [m] — [n].

» Common model of random assignment/allocation, and their effects on
overall load and load balance.

> Also crucial for analysis of hashing and (idealized) hash functions.

RA - Lecture 9 - slide 7

Balls into Bins
» m balls, n bins, and balls thrown uniformly at random and indepen-
dently into bins (usually one at a time).
» The bins have no upper limit on capacity.
» Can be viewed as a (uniformly) random function, f : [m] — [n].

» Common model of random assignment/allocation, and their effects on
overall load and load balance.

> Also crucial for analysis of hashing and (idealized) hash functions.
Many related questions:

» How many balls do we need (in expectation) to cover all bins?
(Coupon collector, surjective mapping)

» How many balls will lead (with probability > 1/2) to a collision?
(Birthday paradox, injective mapping)

» What is the (expected) maximum load of any bin?
(Load balancing)

RA - Lecture 9 - slide 7

Balls into Bins: maximum load

Goal: bound the maximum load of the “Balls into Bins” model in the case
when m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) EX;]=n- % =1
j=1

RA - Lecture 9 — slide 8

Balls into Bins: maximum load

Goal: bound the maximum load of the “Balls into Bins” model in the case
when m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) EX;]=n- % =1
j=1

Let X; > T be our “bad events” for some threshold T. Then to show that
whp everyone’s load is < T, via the union bound, we need to at least upper
bound the bad event like this

1
Pr[Xi > TI < —.
n

Markov’s inequality gives Pr[X; > T] <
Nor is Chebyshev.

7, but is not good enough.

RA - Lecture 9 — slide 8

Balls into Bins: maximum load

Goal: bound the maximum load of the “Balls into Bins” model in the case
when m = n. For any bin i € [n], its load, denoted X;, has expectation

E[X] =) EX;]=n- % =1
j=1

Let X; > T be our “bad events” for some threshold T. Then to show that
whp everyone’s load is < T, via the union bound, we need to at least upper
bound the bad event like this

1
Pr[Xi > TI < —.
n

Markov’s inequality gives Pr[X; > T] < =, but is not good enough.

Nor is Chebyshev.

1
T°

Suitable Chernoff bounds for “negatively correlated” r.v’s can be made to
work here, since X;’s are “negatively correlated”, but we didn’t state such
Chernoff bounds.

Instead, we will do a quicker “ad hoc” proof for the upper bound.

RA - Lecture 9 — slide 8

Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.
31n(n)
Inln(n)

Then for sufficiently large n, the maximum load is bounded above by
with probability at least 1 — ;

'Stirling: \/27'tn() /(2mt1) < gl < \/ﬁ() /(12n)

RA - Lecture 9 — slide 9

Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.
31n(n)
Inln(n)

Then for sufficiently large n, the maximum load is bounded above by
with probability at least 1 — ;
Proof: The probability that bin i receives > M balls is at most

(W ()"

'Stirling: \/27'tn() /(2mt1) < gl < \/ﬁ() /(12n)

RA - Lecture 9 — slide 9

Balls into Bins maximum load

Lemma (5.1)

Let n balls be thrown independently and uniformly at random into n bins.

Then for sufficiently large n, the maximum load is bounded above by 11111]11(';))

with probability at least 1 — ;
Proof: The probability that bin i receives > M balls is at most

(W ()"

But (/'\’4) = WLM), satisfies (e.g., using Stirling’s approximation! of n!)
M

()< (w) == GD"

Hence, bin i gets > M balls with probability at most

<;>(;)M<<::4>M—<;>M-

'Stirling: \/27'tn() /(2mt1) < gl < \/ﬁ() /(12n)

RA - Lecture 9 — slide 9

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. u
Bin i gets > M bins with probability at most (ﬁ) .

RA - Lecture 9 — slide 10

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. u
Bin i gets > M bins with probability at most (ﬁ) .

Let M := lili((':,)). Then the probability that any bin gets > M balls is (using

the Union bound) at most

3In(n)

3In(n) 3In(n)
e-Inln(n) BhC) Inln(n) BRC) In(n) Inln(n)\ B0
n- J S n- =€ .
3In(n) In(n) In(n)

RA - Lecture 9 — slide 10

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d. u
Bin i gets > M bins with probability at most (ﬁ)

Let M := lili((':,)). Then the probability that any bin gets > M balls is (using
the Union bound) at most

31In(n) 3In(n) 3In(n)
e-Inln(n) B Inln(n)\ == In(n) (InIn(n) 2R
n- J S n- =€ .
3In(n) In(n) In(n)

We can rewrite this as

3In(n)

Corey In(n) Inlnln(n
eln(n) (elnlnln(n)flnln(n)) Inln(n) eln(n) (ef3ln(”)+3%> .

—21n(n)-3n(n) nlninm)

— e Inln(n)

RA - Lecture 9 — slide 10

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)’s in the exponents, and evaluating, we have

In(n) Inlnln(n) Inlnln(n)
—21In(n) | €3W — n*Z N IO

e

RA — Lecture 9 — slide 11

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)’s in the exponents, and evaluating, we have
3Mn(n) Inlnin(n) Inlnln(n)

eiZln(n) - e Inln(n) — n72 -n Inln(n) .

64
If we take n “sufficiently large” (n > ¢ will do it), then h;:i;?'(?;) <1/3,
hence the probability that some bin has > M balls is at most

1
—. O

n

RA - Lecture 9 — slide 11

Balls into Bins maximum load

Proof of Lemma 5.1 cont’d.
Grouping the In(n)’s in the exponents, and evaluating, we have

In(n) Inlnln(n) Inlnln(n)
eiZln(n) . e3 Inln(n) — n72 -n Inln(n) .

64
If we take n “sufficiently large” (n > ¢ will do it), then h}:ﬂ{?fg;) <1/3,
hence the probability that some bin has > M balls is at most

1
—. O

n

We can also derive an essentially matching lower pound (using “Poisson
approximation”) to show that “with high probability” there will be a bin
with _O.(lnln)) balls in it.

We will not prove this (see section 5.3-5.4 of Chapter 5 of [MU]).

RA - Lecture 9 — slide 11

Application to Hashing

» An “ideal” hash function should behave like a random function f :
[m] — [nl.

» Much research has been done on developing “good” hash functions
that “appear” random.

> If we simply assume the hash function behaves randomly, we have
precisely the balls-in-bins model.

> Maximum load tells us the maximum number of inputs that hash to
the same value. This also defines the limit of the lookup time when we
hash a new value.

RA — Lecture 9 — slide 12

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins (two
different idealized hash functions), and choose the one with the lower load.

RA - Lecture 9 — slide 13

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins (two
different idealized hash functions), and choose the one with the lower load.

Surprisingly, the maximum load in this case is % + O(1) with probability
1—o0(1/n).
Note the load reduces from © (Inn) to © (Inln n).

Inlnn

RA - Lecture 9 — slide 13

The power of two choices

Instead of throwing balls randomly, we throw them sequentially with the
following tweak: for each ball, we pick two random choices of bins (two
different idealized hash functions), and choose the one with the lower load.

Surprisingly, the maximum load in this case is % + O(1) with probability
1—o0(1/n).
Note the load reduces from © (Inn) to © (Inln n).

Inlnn

More generally, if we have d > 2 choices, the resulting maximum load is
hl‘;—r;" + O(1) with probability 1— o(1/n).
This is Theorem 17.1 of [MU] (details in Section 17.1/17.2).

Chapter 17 also discusses Cuckoo Hashing, a clever variation of 2-choice
hashing, which has been highly successful in practice.

But we do not expect you to know the content of Chapter 17.

RA - Lecture 9 — slide 13

References

» Sections 5.1, 5.2 of “Probability and Computing” [MU].

RA — Lecture 9 — slide 14

