Randomized Algorithms Lecture 11: Markov chains (Basics)

Raul Garcia-Patron

School of Informatics University of Edinburgh

Stochastic processes

- ► A Stochastic process is a collection of random variables $\mathbf{X} = \{X_t : t \in T\}$ (usually $T = \mathbb{N}^0$).
- ▶ X_t is the state of the process at time $t \in T$:
 - X(t) is an element of a discrete finite set Ω .
- Examples:
 - A random coin/bit
 - Step 1 output random bit, step t > 1 or more: if $X_{t-1} = 0$ then $X_t = X_{t-1} = 0$, otherwise toss a coin.
 - Step 1 and 2 output random bits, step t > 2 or more: if $X_{t-1} = X_{t-2} = 0$ then $X_t = 0$, otherwise toss a coin.
- Process probability $\bar{p}(t) = (p_0(t), p_1(t), ..., p_n(t))$, where $|\Omega| = n$. \bar{p} is a row vector.

Markov chains

Definition (Definition 7.1)

A discrete-time stochastic process is said to be a Markov chain if

$$\Pr[X_t = a_t \mid X_{t-1} = a_{t-1}, \dots, X_0 = a_0] = \Pr[X_t = a_t \mid X_{t-1} = a_{t-1}].$$

Also memoryless property.

- Examples:
 - A random coin/bit
 - Step 1 output random bit, step t > 1 or more: if X_{t-1} = 0 then X_t = X_{t-1} = 0, otherwise toss a coin.
 - Step 1 and 2 output random bits, step t > 2 or more: if X_{t-1} = X_{t-2} = 0 then X_t = 0, otherwise toss a coin.

RA (2022/23) – Lecture 11 – slide 3

(日)

Graph representation Markov chain

Graph G = (V, E, w) representation of a Markov chain on the *state* set $\Omega = \{0, 1, 2, 3\}$.

- Vertices V are states of the chain.
- ▶ There is and edge $(i, j) \in E$ iif P[j|i] > 0
- Edge weight w(i, j) = P[j|i]

Transition matrix

The transition matrix *P*, where $P[a_{t-1}, a_t]$ denotes the probability $Pr[X_t = a_t | X_{t-1} = a_{t-1}]$.

P in terms of a matrix of dimensions |Ω| × |Ω| (if Ω is finite) or of infinite dimension if Ω is countably infinite.

$$\begin{bmatrix}
P[a_1, a_1] & P[a_1, a_2] & \dots & P[a_1, a_j] & \dots \\
P[a_2, a_1] & P[a_2, a_2] & \dots & P[a_2, a_j] & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
P[a_j, a_1] & P[a_j, a_2] & \dots & P[a_j, a_j] & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RA (2022/23) – Lecture 11 – slide 5

P is stochastic iif $\forall x : \sum_{y \in \Omega} P(x, y) = 1$.

Example Markov chain transition matrix

Previous example corresponds to the following transition matrix:

$$M = \begin{bmatrix} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Iterations of the Markov chain

Suppose we start our Markov process with the initial state X_0 being some fixed $a \in \Omega$.

- ► The "next state" X_1 has distribution $\bar{p}_1(y) = P(a, y)$ given by *a*'s row of the transition matrix *P*.

$$\bar{p}_1 = \bar{p}_0 \cdot P,$$

Second step of the Markov chain: the random variable X₂ will then be distributed according to p
₂:

$$\bar{p}_2 = \bar{p}_1 \cdot M = \bar{p}_0 \cdot M \cdot M = \bar{p}_0 \cdot M^2.$$

After t steps of the Markov chain M, the random variable X_t will then be distributed according to p

t, where

$$\bar{p}_t = \bar{p}_0 \cdot M^t.$$

Random walk on the *n*-dimensional hypercube

The *n*-dimensional hypercube is a graph whose vertices are the binary *n*-tuples $\{0, 1\}^n$. Two vertices are connected by an edge when they differ in exactly one coordinate.

The simple random walk on the hypercube:

- Choose a coordinate $j \in \{1, 2, ..., n\}$ uniformly at random.
- Set $x_j = x_j + 1 \pmod{2}$ (flip the bit).

Many interesting cases of Markov chain converge to their stationary distribution π , which under mild conditions is unique.

A stationary distribution satisfies the condition:

$$\pi = \pi \boldsymbol{P} \tag{1}$$

Random walk on hypercube

The stationary distribution the uniform distribution over the 2^n binary *n*-tuples $\{0, 1\}^n$, i.e., $p(x_1, x_2, ..., x_n) = 1/2^n$.

Proof.

- n = 1: flipping a bit that is initially 0 or 1 with probability 1/2 does not change the overall distribution.
- ► The global uniform distribution is equivalent to the product if its marginals, i.e. $p(x_1, x_2, ..., x_n) = p(x_1)p(x_2)...p(x_n) = 1/2^n$.
- ► The bit flip of x_j does not change the marginal p(x_j), neither p(x₁, x₂, ..., x_n).
 RA (2022/23) Lecture 11 slide 10

Convergence

Theorem (Th. 7.10 (+ Th. 7.7))

Consider a finite, irreducible, and aperiodic Markov chain with transition matrix P.If there is a probability distribution π that for each pair of state *i*, *j* satisfies detailed balance (time reversible chains)

$$\pi_i P_{i,j} = \pi_j P_{j,i},$$

then π is the unique stationary distribution corresponding to *P*.

Irreducible

Any state must have a non-zero probability to reach any other state. Lemma (7.4)

A finite Markov chain is irreducible if and only if its graph representation is a strongly connected graph.

Counterexample I: Disconnected graph Counterexample II: Coupon Collector

A collector desires to complete a collection of *n* coupons. We suppose each coupon acquired is equally likely. Let X_t denote the number of different types represented among the collector's *t* acquired coupons:

•
$$P(k, k+1) = (n-k)/n$$

$$\blacktriangleright P(k,k) = k/n$$

Periodic

A state *i* has period *k* if any return to state *i* must occur in multiples of k time steps. A Markov chain is periodic if any state in the chain is periodic. A state or chain that is not periodic is periodic. **Periodic example: Random walk on the** *n***-cycle**

Let $\Omega = Z_n = \{0, 1, ..., n-1\}$ and consider the transition matrix:

$$P(j,k) = \begin{cases} 1/2 & \text{if } k \equiv j+1 \pmod{n} \\ 1/2 & \text{if } k \equiv j-1 \pmod{n} \\ 0 & \text{Otherwise.} \end{cases}$$
(2)

Periodic vs aperiodic

Definition (Period of a state)

The period k of a state i is defined as

$$k = \operatorname{GCD}\{n : \Pr(X_n = i | X_0 = i) > 0\}.$$

Note that even though a state has period k, it may not be possible to reach the state in k steps. For example, suppose it is possible to return to the state in $\{6, 8, 10, 12, ...\}$ time steps; k would be 2, even though 2 does not appear in this list.

Definition (Aperiodic state)

If the period of a state is k = 1, then the state is said to be aperiodic.

Curing periodicity

On can always turn a periodic Markov chain into an aperiodic one by replacing *P* by $Q = \frac{P+I}{2}$, where *I* is the identity matrix. Indeed any convex misture of *P* and *I* that has non-zero probability of *I* will work. **Example: Lazy random walk on the** *n***-cycle**

Let $\Omega = Z_n = \{0, 1, ..., n-1\}$ and consider the transition matrix:

$$P(j,k) = \begin{cases} 1/4 & \text{if } k \equiv j+1 \pmod{n} \\ 1/4 & \text{if } k \equiv j-1 \pmod{n} \\ 1/2 & \text{Otherwise.} \end{cases}$$
(3)

Lazy random walk on the *n*-dimensional hypercube

The random walk on the hypercube is periodic, as it alternates parity at each step of the walk.

Let $\Omega = \{0, 1\}^n$ the *n*-tuple, the following lazy random walk on the hypercube:

- Choose a coordinate $j \in \{1, 2, ..., n\}$ uniformly at random.
- Set $x_j = x_j + 1 \pmod{2}$ (flip the bit) with probability 1/2.
- Set $x_j = x_j \pmod{2}$ with probability 1/2.

Convergence

Theorem (Th. 7.10 (+ Th. 7.7))

Consider a finite, irreducible, and aperiodic Markov chain with transition matrix P.If there is a probability distribution π that for each pair of state *i*, *j* satisfies detailed balance (time reversible chains)

$$\pi_i P_{i,j} = \pi_j P_{j,i},$$

then π is the unique stationary distribution corresponding to *P*.

Detailed balance: existance of solution

Theorem (Th. 7.10)

A probability distribution π that for each pair of state *i*, *j* satisfies **detailed balance** (time reversible chains)

 $\pi_i P_{i,j} = \pi_j P_{j,i},$

is a stationary distribution corresponding to P.

Proof.

•
$$\pi P = \sum_{i=0}^{n} \pi_i P_{i,j} = \sum_{i=0}^{n} \pi_j P_{j,i} = \pi_j = \pi.$$

Irreducible: uniqueness of solution

Lemma (1.16 (Levin-Peres p12)

Suppose that P is irreducible. A function h satisfying Ph = h must be constant at every state.

- ▶ By contradiction. Chose x_0 such that $h(x_0) = M$ is maximum.
- ▶ If for *z* such that $P(x_0, z) > 0$ we have h(z) < M then

$$h(x_0) = P(x_0, z)h(z) + \sum_{y \neq z} P(x_0, y)h(y) < M$$
(4)

▶ Irreducible \rightarrow we can walk the whole graph and h(i) = M.

Lemma (1.17 (Levin-Peres p13)

Let P correspond to irreducible MC. There is a unique π s.t. $\pi = \pi P$.

- Lemma 1.16 implies kernel of P I has dimension 1.
- ▶ P I has column rank and row rank |X| 1.

•
$$\pi = \pi P$$
 has dimension 1 + normalization.

RA (2022/23) - Lecture 11 - slide 19

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

General uniqueness of solution

- State y is accessible from x, i.e., $x \rightarrow y$ if $\exists t : P^t(x, y) > 0$.
- A state is **essential** if for all *y* such that $x \rightarrow y$ also $y \rightarrow x$ is true.
- We say x communicates with y, i.e., $x \leftrightarrow y$ if and only if $x \rightarrow y$ and $y \rightarrow x$.
- ► Communicating classes: equivalence class over ↔.
- Proposition 1.19 (Levin and Peres, p15-17): The transition matrix P has a unique stationary distribution if and only if there is a unique essential communicating class.

RA (2022/23) – Lecture 11 – slide 20

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

General uniqueness of solution

Coupon Collector: single vertex communication class.

Random walk on hypercube: all hypercube is a single

communication class.

Convergence and periodicity

Periodicity makes the limit $\lim_{t\to\infty} P_{i,i}^t$ impossible.

