Randomized Algorithms
 Lecture 11: Markov chains (Basics)

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2022/23) - Lecture 11 - slide 1

Stochastic processes

- A Stochastic process is a collection of random variables $\mathbf{X}=\left\{X_{t}: t \in T\right\}$ (usually $T=\mathbb{N}^{0}$).
- X_{t} is the state of the process at time $t \in T$:
- $X(t)$ is an element of a discrete finite set Ω.
- Examples:
- A random coin/bit
- Step 1 output random bit, step $t>1$ or more: if $X_{t-1}=0$ then $X_{t}=X_{t-1}=0$, otherwise toss a coin.
- Step 1 and 2 output random bits, step $t>2$ or more: if $X_{t-1}=X_{t-2}=0$ then $X_{t}=0$, otherwise toss a coin.
- Process probability $\bar{p}(t)=\left(p_{0}(t), p_{1}(t), \ldots, p_{n}(t)\right)$, where $|\Omega|=n$. \bar{p} is a row vector.

Markov chains

Definition (Definition 7.1)
A discrete-time stochastic process is said to be a Markov chain if

$$
\operatorname{Pr}\left[X_{t}=a_{t} \mid X_{t-1}=a_{t-1}, \ldots, X_{0}=a_{0}\right]=\operatorname{Pr}\left[X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right] .
$$

Also memoryless property.

- Examples:
- A random coin/bit
- Step 1 output random bit, step $t>1$ or more: if $X_{t-1}=0$ then $X_{t}=X_{t-1}=0$, otherwise toss a coin.
- Step 1 and 2 output random bits, step $t>2$ or more: if $X_{t-1}=X_{t-2}=0$ then $X_{t}=0$, otherwise toss a coin.

Graph representation Markov chain

Graph $G=(V, E, w)$ representation of a Markov chain on the state set $\Omega=\{0,1,2,3\}$.

- Vertices V are states of the chain.
- There is and edge $(i, j) \in E$ iif $P[j \mid i]>0$
- Edge weight $w(i, j)=P[j \mid i]$

RA (2022/23) - Lecture 11 - slide 4

Transition matrix

The transition matrix P, where $P\left[a_{t-1}, a_{t}\right]$ denotes the probability $\operatorname{Pr}\left[X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right]$.

- P in terms of a matrix of dimensions $|\Omega| \times|\Omega|$ (if Ω is finite) or of infinite dimension if Ω is countably infinite.

$$
\left[\begin{array}{ccccc}
P\left[a_{1}, a_{1}\right] & P\left[a_{1}, a_{2}\right] & \ldots & P\left[a_{1}, a_{j}\right] & \ldots \\
P\left[a_{2}, a_{1}\right] & P\left[a_{2}, a_{2}\right] & \ldots & P\left[a_{2}, a_{j}\right] & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
P\left[a_{j}, a_{1}\right] & P\left[a_{j}, a_{2}\right] & \ldots & P\left[a_{j}, a_{j}\right] & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

P is stochastic if $\forall x: \sum_{y \in \Omega} P(x, y)=1$.

Example Markov chain transition matrix

Previous example corresponds to the following transition matrix:

$$
M=\left[\begin{array}{cccc}
0 & \frac{1}{4} & 0 & \frac{3}{4} \\
\frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{array}\right]
$$

RA (2022/23) - Lecture 11 - slide 6

Iterations of the Markov chain

Suppose we start our Markov process with the initial state X_{0} being some fixed $a \in \Omega$.

- The "next state" X_{1} has distribution $\bar{p}_{1}(y)=P(a, y)$ given by a's row of the transition matrix P.
- We define \bar{p}_{0} to be the row vector with $\bar{p}(a)=1$ and all other entries 0 , then we can define the probability distribution \bar{p}_{1} by

$$
\bar{p}_{1}=\bar{p}_{0} \cdot P
$$

- Second step of the Markov chain: the random variable X_{2} will then be distributed according to \bar{p}_{2} :

$$
\bar{p}_{2}=\bar{p}_{1} \cdot M=\bar{p}_{0} \cdot M \cdot M=\bar{p}_{0} \cdot M^{2} .
$$

- After t steps of the Markov chain M, the random variable X_{t} will then be distributed according to \bar{p}_{t}, where

$$
\bar{p}_{t}=\bar{p}_{0} \cdot M^{t} .
$$

RA (2022/23) - Lecture 11 - slide 7

Random walk on the n-dimensional hypercube

The n-dimensional hypercube is a graph whose vertices are the binary n-tuples $\{0,1\}^{n}$. Two vertices are connected by an edge when they differ in exactly one coordinate.

The simple random walk on the hypercube:

- Choose a coordinate $j \in\{1,2, \ldots, n\}$ uniformly at random.
- Set $x_{j}=x_{j}+1(\bmod 2)$ (flip the bit).

Stationary distribution

Many interesting cases of Markov chain converge to their stationary distribution π, which under mild conditions is unique.

- A stationary distribution satisfies the condition:

$$
\begin{equation*}
\pi=\pi P \tag{1}
\end{equation*}
$$

RA (2022/23) - Lecture 11 - slide 9

Random walk on hypercube

The stationary distribution the uniform distribution over the 2^{n} binary n-tuples $\{0,1\}^{n}$, i.e, $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1 / 2^{n}$.

Proof.

- $n=1$: flipping a bit that is initially 0 or 1 with probability $1 / 2$ does not change the overall distribution.
- The global uniform distribution is equivalent to the product if its marginals,i.e, $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)=1 / 2^{n}$.
- The bit flip of x_{j} does not change the marginal $p\left(x_{j}\right)$, neither $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\text { RA (2022/23) - Lecture } 11 \text { - slide } 10
$$

Convergence

Theorem (Th. 7.10 (+ Th. 7.7))
Consider a finite, irreducible, and aperiodic Markov chain with transition matrix P.If there is a probability distribution π that for each pair of state i, j satisfies detailed balance (time reversible chains)

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i}
$$

then π is the unique stationary distribution corresponding to P.

Irreducible

Any state must have a non-zero probability to reach any other state.
Lemma (7.4)
A finite Markov chain is irreducible if and only if its graph representation is a strongly connected graph.

Counterexample I: Disconnected graph Counterexample II: Coupon Collector

A collector desires to complete a collection of n coupons. We suppose each coupon acquired is equally likely. Let X_{t} denote the number of different types represented among the collector's t acquired coupons:

- $P(k, k+1)=(n-k) / n$
- $P(k, k)=k / n$

Periodic

A state i has period k if any return to state i must occur in multiples of k time steps. A Markov chain is periodic if any state in the chain is periodic. A state or chain that is not periodic is periodic. Periodic example: Random walk on the n-cycle

Let $\Omega=Z_{n}=\{0,1, \ldots, n-1\}$ and consider the transition matrix:

$$
P(j, k)=\left\{\begin{array}{lll}
1 / 2 & \text { if } k \equiv j+1 & (\bmod n) \tag{2}\\
1 / 2 & \text { if } k \equiv j-1 & (\bmod n) \\
0 & \text { Otherwise }
\end{array}\right.
$$

RA (2022/23) - Lecture 11 - slide 13

Periodic vs aperiodic

Definition (Period of a state)

The period k of a state i is defined as

$$
k=\operatorname{GCD}\left\{n: \operatorname{Pr}\left(X_{n}=i \mid X_{0}=i\right)>0\right\}
$$

Note that even though a state has period k, it may not be possible to reach the state in k steps. For example, suppose it is possible to return to the state in $\{6,8,10,12, \ldots\}$ time steps; k would be 2 , even though 2 does not appear in this list.
Definition (Aperiodic state)
If the period of a state is $k=1$, then the state is said to be aperiodic.

Curing periodicity

On can always turn a periodic Markov chain into an aperiodic one by replacing P by $Q=\frac{P+1}{2}$, where I is the identity matrix. Indeed any convex misture of P and I that has non-zero probability of $/$ will work. Example: Lazy random walk on the n-cycle

Let $\Omega=Z_{n}=\{0,1, \ldots, n-1\}$ and consider the transition matrix:

$$
P(j, k)=\left\{\begin{array}{lll}
1 / 4 & \text { if } k \equiv j+1 & (\bmod n) \tag{3}\\
1 / 4 & \text { if } k \equiv j-1 & (\bmod n) \\
1 / 2 & \text { Otherwise } &
\end{array}\right.
$$

RA (2022/23) - Lecture 11 - slide 15

Lazy random walk on the n-dimensional hypercube

The random walk on the hypercube is periodic, as it alternates parity at each step of the walk.

Let $\Omega=\{0,1\}^{n}$ the n-tuple, the following lazy random walk on the hypercube:

- Choose a coordinate $j \in\{1,2, \ldots, n\}$ uniformly at random.
- Set $x_{j}=x_{j}+1 \quad(\bmod 2)$ (flip the bit) with probability $1 / 2$.
- Set $x_{j}=x_{j} \quad(\bmod 2)$ with probability $1 / 2$.

$$
\text { RA (2022/23) - Lecture } 11 \text { - slide } 16
$$

Convergence

Theorem (Th. 7.10 (+ Th. 7.7))
Consider a finite, irreducible, and aperiodic Markov chain with transition matrix P.If there is a probability distribution π that for each pair of state i, j satisfies detailed balance (time reversible chains)

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i}
$$

then π is the unique stationary distribution corresponding to P.

Detailed balance: existance of solution

Theorem (Th. 7.10)
A probability distribution π that for each pair of state i, j satisfies detailed balance (time reversible chains)

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i},
$$

is a stationary distribution corresponding to P.
Proof.

- $\pi P=\sum_{i=0}^{n} \pi_{i} P_{i, j}=\sum_{i=0}^{n} \pi_{j} P_{j, i}=\pi_{j}=\pi$.

Irreducible: uniqueness of solution

Lemma (1.16 (Levin-Peres p12)

Suppose that P is irreducible. A function h satisfying $P h=h$ must be constant at every state.

- By contradiction. Chose x_{0} such that $h\left(x_{0}\right)=M$ is maximum.
- If for z such that $P\left(x_{0}, z\right)>0$ we have $h(z)<M$ then

$$
\begin{equation*}
h\left(x_{0}\right)=P\left(x_{0}, z\right) h(z)+\sum_{y \neq z} P\left(x_{0}, y\right) h(y)<M \tag{4}
\end{equation*}
$$

- Irreducible \rightarrow we can walk the whole graph and $h(i)=M$.

Lemma (1.17 (Levin-Peres p13)

Let P correspond to irreducible MC. There is a unique π s.t. $\pi=\pi P$.

- Lemma 1.16 implies kernel of $P-I$ has dimension 1.
- P - I has column rank and row rank $|X|-1$.
- $\pi=\pi P$ has dimension $1+$ normalization.

General uniqueness of solution

- State y is accessible from x, i.e., $x \rightarrow y$ if $\exists t: P^{t}(x, y)>0$.
- A state is essential if for all y such that $x \rightarrow y$ also $y \rightarrow x$ is true.
- We say x communicates with y, i.e., $x \leftrightarrow y$ if and only if $x \rightarrow y$ and $y \rightarrow x$.
- Communicating classes: equivalence class over \leftrightarrow.
- Proposition 1.19 (Levin and Peres, p15-17): The transition matrix P has a unique stationary distribution if and only if there is a unique essential communicating class.

General uniqueness of solution

Coupon Collector: single vertex communication class.

Random walk on hypercube: all hypercube is a single

communication class.

RA (2022/23) - Lecture 11 - slide 21

Convergence and periodicity

Periodicity makes the limit $\lim _{t \rightarrow \infty} P_{i, j}^{t}$ impossible.

