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Stochastic processes

» A Stochastic process is a collection of random variables
X ={X;:te T} (usually T =NO),

» X; is the state of the process attime t € T:
» X(t) is an element of a discrete finite set Q.
» Examples:

» A random coin/bit
» Step 1 output random bit, step t > 1 or more: if X; 1 =0

then X; = X;_{ = 0, otherwise toss a coin.
» Step 1 and 2 output random bits, step ¢ > 2 or more: if
Xi_1 = Xi_» = 0 then X; = 0, otherwise toss a coin.

» Process probability p(t) = (po(t), p1 (1), ..., pn(t)), where |Q] = n.
p is a row vector.
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Markov chains

Definition (Definition 7.1)
A discrete-time stochastic process is said to be a Markov chain if

Pr[X; = a; | Xi—1 = @r—1,..., Xo =a] = PrlXi =a; | Xi—1 = a1l
Also memoryless property.

» Examples:

» A random coin/bit
» Step 1 output random bit, step t > 1 or more: if X;_1 =0

then X; = X;_; = 0, otherwise toss a coin.
» Step 1 and 2 output random bits, step t > 2 or more: if
Xi—1 = Xi_> = 0 then X; = 0, otherwise toss a coin.

RA (2022/23) — Lecture 11 — slide 3



Graph representation Markov chain

Graph G = (V, E, w) representation of a Markov chain on the state
setQ ={0,1,2,3}.

» Vertices V are states of the chain.
» There is and edge (i,j) € Eiif P[jli] >0
» Edge weight w(i,j) = Plj|i]
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Transition matrix

The transition matrix P, where Pla; 1, a;] denotes the
probablllty Pr[X; = a; | Xi—1 = ar—_1].

» P in terms of a matrix of dimensions |Q| x |Q] (if Q is finite) or of
infinite dimension if Q is countably infinite.

Plai,a] Pla,a] ... Pla,ajl
Plag,ai] Plas,a] ... Pla,ajl
Pla;,a1] Plaj,a)] ... Plaj,a]l

P is stochastic iif Vx : ZyeQ P(x,y) =1.
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Example Markov chain transition matrix

Previous example corresponds to the following transition matrix:
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lterations of the Markov chain

Suppose we start our Markov process with the initial state X, being
some fixed a € Q.

» The “next state" X; has distribution pi(y) = P(a, y) given by a’s
row of the transition matrix P.

» We define py to be the row vector with p(a) = 1 and all other
entries 0, then we can define the probability distribution py by

,b1 = pO'P)

» Second step of the Markov chain: the random variable X, will
then be distributed according to p.:

Po=p1-M=po-M-M = po- M°.

> After t steps of the Markov chain M, the random variable X; will
then be distributed according to p;, where
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Random walk on the n-dimensional hypercube

The n-dimensional hypercube is a graph whose vertices are the
binary n-tuples {0, 1}". Two vertices are connected by an edge when
they differ in exactly one coordinate.

The simple random walk on the hypercube:
» Choose a coordinate j € {1, 2, ..., n} uniformly at random.
» Setx;=x;+1 ( mod 2) (flip the bit).
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Stationary distribution

Many interesting cases of Markov chain converge to their stationary
distribution 7t, which under mild conditions is unique.

> A stationary distribution satisfies the condition:

n=mnP (1
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Random walk on hypercube
The stationary distribution the uniform distribution over the 2" binary
n-tuples {0, 1}", i.e, p(X1, X2y ..., Xp) = 1/2".

Proof.

» n=1:flipping a bit that is initially 0 or 1 with probability 1/2 does
not change the overall distribution.

» The global uniform distribution is equivalent to the product if its
marginals,i.e, p(x1, X, ..., Xn) = p(x1)p(X2)...p(xn) = 1/2".

» The bit flip of x; does not change the marginal p(x;), neither

p(X1)X2,"'»Xn)- .
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Convergence

Theorem (Th. 7.10 (+ Th. 7.7))

Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution 7t that for each
pair of state i, j satisfies detailed balance (time reversible chains)

7Py = Py,

then 7t is the unique stationary distribution corresponding to P.
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Irreducible
Any state must have a non-zero probability to reach any other state.

Lemma (7.4)

A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.

Counterexample I: Disconnected graph
Counterexample II: Coupon Collector

(] /) /) ya) N
~71 \/"Z v,/ L/ \V y J
=12 3 = ()3

A collector desires to complete a collection of n coupons. We
suppose each coupon acquired is equally likely. Let X; denote the
number of different types represented among the collector’s ¢
acquired coupons:

» Pk,k+1)=(n—k)/n
> P(k,k) =k/n
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Periodic
A state i has period k if any return to state i must occur in multiples of
k time steps. A Markov chain is periodic if any state in the chain is
periodic. A state or chain that is not periodic is periodic.
Periodic example: Random walk on the n-cycle

N
N/

Let O = Z,={0,1,...,n— 1} and consider the transition matrix:

1/2 ifk=j+1 ( modn)
Pj,ky=<1/2 ifk=j—1 ( modn) (2)
0 Otherwise.
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Periodic vs aperiodic

Definition (Period of a state)
The period k of a state i is defined as

k =GCD{n:Pr(X, =ilXo =1i) > 0}

Note that even though a state has period k, it may not be possible to
reach the state in k steps. For example, suppose it is possible to
return to the state in {6,8,10,12, ...} time steps; k would be 2, even
though 2 does not appear in this list.

Definition (Aperiodic state)
If the period of a state is k = 1, then the state is said to be aperiodic.

/\
\_/
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Curing periodicity
On can always turn a periodic Markov chain into an aperiodic one by
replacing P by Q = %, where [ is the identity matrix. Indeed any
convex misture of P and / that has non-zero probability of / will work.

Example: Lazy random walk on the n-cycle

/

\_/

Let O = Z,={0,1,...,n— 1} and consider the transition matrix:

1/4 ifk=j+1 ( mod n)
P(,k)=<1/4 ifk=j—1 ( mod n) (3)
1/2 Otherwise.
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Lazy random walk on the n-dimensional hypercube

The random walk on the hypercube is periodic, as it alternates parity
at each step of the walk.

Let Q ={0, 1}" the n-tuple, the following lazy random walk on the
hypercube:

» Choose a coordinate j € {1, 2, ..., n} uniformly at random.
> Setx;=x;+1 ( mod 2) (flip the bit) with probability 1/2.
» Set x; =x ( mod 2) with probability 1/2.
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Convergence

Theorem (Th. 7.10 (+ Th. 7.7))

Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution 7t that for each
pair of state i, j satisfies detailed balance (time reversible chains)

7Py = Py,

then 7t is the unique stationary distribution corresponding to P.

RA (2022/23) — Lecture 11 —slide 17



Detailed balance: existance of solution

Theorem (Th. 7.10)

A probability distribution Tt that for each pair of state i, j satisfies
detailed balance (fime reversible chains)

7P = 7Py,
is a stationary distribution corresponding to P.

Proof.

n n
> P =3 o miPij=3_omPi=m=m
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Irreducible: uniqueness of solution

Lemma (1.16 (Levin-Peres p12)

Suppose that P is irreducible. A function h satisfying Ph = h must be
constant at every state.

» By contradiction. Chose X such that h(xg) = M is maximum.
» If for z such that P(xp, z) > 0 we have h(z) < M then

h(x0) = P(x0,2)h(2) + ) _ P(x0,y)h(y) <M (4)
y#2
» Irreducible — we can walk the whole graph and h(i) = M.

Lemma (1.17 (Levin-Peres p13)
Let P correspond to irreducible MC. There is a unique 7 s.t. ™= 7tP.
» Lemma 1.16 implies kernel of P — | has dimension 1.
» P — [ has column rank and row rank | X| — 1.
» 7= ntP has dimension 1 + normalization.
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General uniqueness of solution

» State y is accessible from x, i.e., x — y if 3t: P!(x, y) > 0.
> A state is essential if for all y such that x — y also y — x is true.

» We say x communicates with y, i.e., x & yifandonly if x — y
and y — x.

» Communicating classes: equivalence class over .

» Proposition 1.19 (Levin and Peres, p15-17): The transition
matrix P has a unique stationary distribution if and only if there
is a unique essential communicating class.
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General uniqueness of solution

Coupon Collector: single vertex communication class.

communication class.
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Convergence and periodicity

Periodicity makes the limit lim;_, P,-’J impossible.
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