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Stochastic processes

▶ A Stochastic process is a collection of random variables
X = {Xt : t ∈ T } (usually T = N0).

▶ Xt is the state of the process at time t ∈ T :

▶ X (t) is an element of a discrete finite set Ω.

▶ Examples:

▶ A random coin/bit
▶ Step 1 output random bit, step t > 1 or more: if Xt−1 = 0

then Xt = Xt−1 = 0, otherwise toss a coin.
▶ Step 1 and 2 output random bits, step t > 2 or more: if

Xt−1 = Xt−2 = 0 then Xt = 0, otherwise toss a coin.

▶ Process probability p̄(t) = (p0(t),p1(t), ...,pn(t)), where |Ω| = n.
p̄ is a row vector.
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Markov chains

Definition (Definition 7.1)
A discrete-time stochastic process is said to be a Markov chain if

Pr[Xt = at | Xt−1 = at−1, . . . ,X0 = a0] = Pr[Xt = at | Xt−1 = at−1].

Also memoryless property.

▶ Examples:

▶ A random coin/bit
▶ Step 1 output random bit, step t > 1 or more: if Xt−1 = 0

then Xt = Xt−1 = 0, otherwise toss a coin.
▶ Step 1 and 2 output random bits, step t > 2 or more: if

Xt−1 = Xt−2 = 0 then Xt = 0, otherwise toss a coin.
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Graph representation Markov chain

Graph G = (V ,E ,w) representation of a Markov chain on the state
set Ω = {0,1,2,3}.

▶ Vertices V are states of the chain.

▶ There is and edge (i , j) ∈ E iif P[j |i ] > 0

▶ Edge weight w(i , j) = P[j |i ]
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Transition matrix

The transition matrix P, where P[at−1,at ] denotes the
probability Pr[Xt = at | Xt−1 = at−1].

▶ P in terms of a matrix of dimensions |Ω|× |Ω| (if Ω is finite) or of
infinite dimension if Ω is countably infinite.



P[a1,a1] P[a1,a2] . . . P[a1,aj ] . . .
P[a2,a1] P[a2,a2] . . . P[a2,aj ] . . .

...
...

...
...

...
P[aj ,a1] P[aj ,a2] . . . P[aj ,aj ] . . .

...
...

...
...

...


P is stochastic iif ∀x :

∑
y∈Ω P(x , y) = 1.
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Example Markov chain transition matrix

Previous example corresponds to the following transition matrix:

M =


0 1

4 0 3
4

1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4


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Iterations of the Markov chain
Suppose we start our Markov process with the initial state X0 being
some fixed a ∈ Ω.

▶ The “next state" X1 has distribution p̄1(y) = P(a, y) given by a’s
row of the transition matrix P.

▶ We define p̄0 to be the row vector with p̄(a) = 1 and all other
entries 0, then we can define the probability distribution p̄1 by

p̄1 = p̄0 · P,

▶ Second step of the Markov chain: the random variable X2 will
then be distributed according to p̄2:

p̄2 = p̄1 · M = p̄0 · M · M = p̄0 · M2.

▶ After t steps of the Markov chain M, the random variable Xt will
then be distributed according to p̄t , where

p̄t = p̄0 · M t .
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Random walk on the n-dimensional hypercube
The n-dimensional hypercube is a graph whose vertices are the
binary n-tuples {0,1}n. Two vertices are connected by an edge when
they differ in exactly one coordinate.

The simple random walk on the hypercube:

▶ Choose a coordinate j ∈ {1,2, ...,n} uniformly at random.

▶ Set xj = xj + 1 ( mod 2) (flip the bit).
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Stationary distribution

Many interesting cases of Markov chain converge to their stationary
distribution π, which under mild conditions is unique.

▶ A stationary distribution satisfies the condition:

π = πP (1)
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Random walk on hypercube
The stationary distribution the uniform distribution over the 2n binary
n-tuples {0,1}n, i.e, p(x1, x2, ..., xn) = 1/2n.

Proof.
▶ n = 1: flipping a bit that is initially 0 or 1 with probability 1/2 does

not change the overall distribution.

▶ The global uniform distribution is equivalent to the product if its
marginals,i.e, p(x1, x2, ..., xn) = p(x1)p(x2)...p(xn) = 1/2n.

▶ The bit flip of xj does not change the marginal p(xj), neither
p(x1, x2, ..., xn).
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Convergence

Theorem (Th. 7.10 (+ Th. 7.7))
Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution π that for each
pair of state i , j satisfies detailed balance (time reversible chains)

πiPi,j = πjPj,i ,

then π is the unique stationary distribution corresponding to P.
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Irreducible
Any state must have a non-zero probability to reach any other state.

Lemma (7.4)
A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.

Counterexample I: Disconnected graph
Counterexample II: Coupon Collector

A collector desires to complete a collection of n coupons. We
suppose each coupon acquired is equally likely. Let Xt denote the
number of different types represented among the collector’s t
acquired coupons:
▶ P(k , k + 1) = (n − k)/n
▶ P(k , k) = k/n
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Periodic
A state i has period k if any return to state i must occur in multiples of
k time steps. A Markov chain is periodic if any state in the chain is
periodic. A state or chain that is not periodic is periodic.
Periodic example: Random walk on the n-cycle

Let Ω = Zn = {0,1, ...,n − 1} and consider the transition matrix:

P(j , k) =


1/2 if k ≡ j + 1 ( mod n)
1/2 if k ≡ j − 1 ( mod n)
0 Otherwise.

(2)
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Periodic vs aperiodic

Definition (Period of a state)
The period k of a state i is defined as

k = GCD{n : Pr(Xn = i |X0 = i) > 0}.

Note that even though a state has period k, it may not be possible to
reach the state in k steps. For example, suppose it is possible to
return to the state in {6,8,10,12, ...} time steps; k would be 2, even
though 2 does not appear in this list.

Definition (Aperiodic state)
If the period of a state is k = 1, then the state is said to be aperiodic.

RA (2022/23) – Lecture 11 – slide 14



Curing periodicity
On can always turn a periodic Markov chain into an aperiodic one by
replacing P by Q = P+I

2 , where I is the identity matrix. Indeed any
convex misture of P and I that has non-zero probability of I will work.
Example: Lazy random walk on the n-cycle

Let Ω = Zn = {0,1, ...,n − 1} and consider the transition matrix:

P(j , k) =


1/4 if k ≡ j + 1 ( mod n)
1/4 if k ≡ j − 1 ( mod n)
1/2 Otherwise.

(3)
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Lazy random walk on the n-dimensional hypercube
The random walk on the hypercube is periodic, as it alternates parity
at each step of the walk.

Let Ω = {0,1}n the n-tuple, the following lazy random walk on the
hypercube:

▶ Choose a coordinate j ∈ {1,2, ...,n} uniformly at random.

▶ Set xj = xj + 1 ( mod 2) (flip the bit) with probability 1/2.

▶ Set xj = xj ( mod 2) with probability 1/2.
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Convergence

Theorem (Th. 7.10 (+ Th. 7.7))
Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution π that for each
pair of state i , j satisfies detailed balance (time reversible chains)

πiPi,j = πjPj,i ,

then π is the unique stationary distribution corresponding to P.
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Detailed balance: existance of solution

Theorem (Th. 7.10)
A probability distribution π that for each pair of state i , j satisfies
detailed balance (time reversible chains)

πiPi,j = πjPj,i ,

is a stationary distribution corresponding to P.

Proof.
▶ πP =

∑n
i=0 πiPi,j =

∑n
i=0 πjPj,i = πj = π.
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Irreducible: uniqueness of solution
Lemma (1.16 (Levin-Peres p12)
Suppose that P is irreducible. A function h satisfying Ph = h must be
constant at every state.

▶ By contradiction. Chose x0 such that h(x0) = M is maximum.

▶ If for z such that P(x0, z) > 0 we have h(z) < M then

h(x0) = P(x0, z)h(z) +
∑
y ̸=z

P(x0, y)h(y) < M (4)

▶ Irreducible → we can walk the whole graph and h(i) = M.

Lemma (1.17 (Levin-Peres p13)
Let P correspond to irreducible MC. There is a unique π s.t. π = πP.

▶ Lemma 1.16 implies kernel of P − I has dimension 1.

▶ P − I has column rank and row rank |X |− 1.

▶ π = πP has dimension 1 + normalization.
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General uniqueness of solution

▶ State y is accessible from x , i.e., x → y if ∃t : P t(x , y) > 0.

▶ A state is essential if for all y such that x → y also y → x is true.

▶ We say x communicates with y , i.e., x ↔ y if and only if x → y
and y → x .

▶ Communicating classes: equivalence class over ↔.

▶ Proposition 1.19 (Levin and Peres, p15-17): The transition
matrix P has a unique stationary distribution if and only if there
is a unique essential communicating class.
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General uniqueness of solution

Coupon Collector: single vertex communication class.

Random walk on hypercube: all hypercube is a single

communication class.
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Convergence and periodicity

Periodicity makes the limit limt→∞ P t
i,j impossible.
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