
Randomized Algorithms
Lecture 12: 2-SAT Randomized Algorithm

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2023/24) – Lecture 12 – slide 1



Logical Formulae and the “satisfiability” question
Definition
▶ Propositional logical variables x1, . . . , xn for varying n.

▶ A literal is any expression which is either xi or x̄i , for some i ∈ [n].

▶ A clause is any disjunction of a number of literals (ex: xi ∨ xj ).

▶ We say a propositional formula ϕ : {0,1}n → {0,1} is in
Conjunctive Normal Form (CNF) if it is of the form

C1 ∧ C2 . . .∧ Ch,

where every Cj is a clause.

▶ The formula ϕ : {0,1}n → {0,1} is in k-CNF if it is in CNF and
every clause contains exactly k literals.

The SAT problem, k-SAT problem is the problem of examining a given
CNF (or k -CNF) expression and deciding whether or not it has a
satisfying assignment.

RA (2023/24) – Lecture 12 – slide 2



Examples of SAT, k -SAT

Example of a SAT question:

(x1 ∨ x8 ∨ x̄6)∧ (x̄4 ∨ x̄7)∧ (x5 ∨ x7 ∨ x4 ∨ x2).

▶ For the formula above, easy to see there is a satisfying
assignment (any with x1 = 1, x4 = 0, x2 = 1 would do).

▶ In general, the SAT problem is NP-complete (we believe there is
no polynomial-time algorithm).

Example of a 2-SAT question:

(x1 ∨ x̄2)∧ (x̄1 ∨ x̄3)∧ (x1 ∨ x2)∧ (x4 ∨ x̄3)∧ (x4 ∨ x̄1).

▶ There is a polynomial-time algorithm (either randomized, as we
see today, or deterministic) to solve 2-SAT.

▶ The 3-SAT problem, and k -SAT for all k > 3, are all
NP-complete.

RA (2023/24) – Lecture 12 – slide 3



2-SAT Randomized Algorithm

We will design a simple randomized algorithm for 2-SAT, and analyse
its performance by analogy to a Markov chain.

Algorithm 2SATRANDOM(n;C1 ∧ C2 ∧ . . .∧ Cℓ)

1. Assign arbitrary values to each of the xi variables.
2. t ← 0
3. while (t < 2mn2 and some clause is unsatisfied) do
4. Choose an arbitrary Ch from all unsatisfied clauses;
5. Choose one of the 2 literals in Ch uniformly at random

and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. return this assignment to the x1, . . . xn else
8. return FAILED.

RA (2023/24) – Lecture 12 – slide 4



2-SAT Randomized Algorithm

Imagine Algorithm 2SATRANDOM running on our 2SAT example, with
the initial assignment being xi = 0 for all i ∈ [n].

(x1 ∨ x̄2)∧ (x̄1 ∨ x̄3)∧ (x1 ∨ x2)∧ (x4 ∨ x̄3)∧ (x4 ∨ x̄1).

▶ Then (x1 ∨ x2) is the sole unsatisfied clause.

▶ Flipping the value of x2 (say) from 0 to 1, will ensure that
(x1 ∨ x2) now becomes satisfied.

▶ However, making this flip would also change the assignment
for (x1 ∨ x̄2), making this clause now unsatisfied.This is a
balanced consequence overall (number of satisfied clauses
stays the same).

▶ However, there are examples where a flip might end up violating
many clauses. So it’s not so helpful for us to use “number of
clauses satisfied” as our measure of progress.

RA (2023/24) – Lecture 12 – slide 5



2-SAT Randomized Algorithm - Analysis

Consider an (unknown so far) satisfying assignment S ∈ {0,1}n that
makes our 2SAT formula ϕ true (satisfies all the clauses).

Our “measure of progress” will be the number of indices k such that
xk = Sk , (x1, . . . , xn) being the current assignment.

We will analyse the expected number of steps before (x1, . . . , xn)
becomes S.

▶ Note that if ϕ does not have any satisfying assignment,
Algorithm 2SATRANDOM always returns FAILED (as it should).

▶ Let’s first assume that the formula ϕ has some satisfying
assignment.

▶ (x t
1, . . . , x

t
n) is the assignment at time step t .

RA (2023/24) – Lecture 12 – slide 6



2-SAT Randomized Algorithm - Analysis (II)

To analyse the behaviour of Algorithm 2SATRANDOM when given a
2CNF formula ϕ that is satisfiable, we need some definitions.

Definition
▶ Let S be some satisfying assignment for ϕ.

▶ (x t
1, . . . , x

t
n) the logical variables after the t-th iteration.

▶ Let Xt denote the number of variables of the
assignment (x t

1, . . . , x
t
n) having the same value as in S.

We work with the Xt variable mainly, and bound the time before it
reaches the value n.

RA (2023/24) – Lecture 12 – slide 7



2-SAT Randomized Algorithm - Analysis (III)
Some observations:

▶ If Xt ever hits the value 0, and ϕ is not yet satisfied, we are
guaranteed that at the next step, Xt+1 = 1. Xt = 0 means all bits
are different (Hamming weight = n).

▶ Alternatively, suppose Xt = j for some value j ∈ {1, . . . ,n − 1}
and that ϕ is unsatisfied.

1. On an unsatisfied clauses, current assignment x t must
differ from S on at least one of the two variables.

2. Probability at least 1/2 we increase the value of Xt by 1:
▶ Case I: one is different, we get the right one with p = 1/2.
▶ Case II: both are different, success with p = 1.

3. Probability at most 1/2 decrease the value of Xt by 1:
chose the one that is equal.

Pr[Xt+1 = j + 1 | ((Xt = j) & ϕ not-sat)] ≥ 1/2;
Pr[Xt+1 = j − 1 | ((Xt = j) & ϕ not-sat)] ≤ 1/2.

RA (2023/24) – Lecture 12 – slide 8



2-SAT Randomized Algorithm - Analysis (IV)

We want to imagine the progress of 2SATRANDOM as a Markov
chain on the states 0,1, . . . ,n. Our concern is bounding the expected
number of steps for Xt to hit the state n (from an arbitrary starting
point).
Markov chains should be memoryless, and this is problematic:

▶ The value for Pr[Xt+1 = j + 1 | ((Xt = j) & ϕ not-sat)] could
depend on whether xt and S disagree on one or two variables i
the unsatisfied clause chosen.

▶ This may depend on the clauses that have been consider in the
past.

RA (2023/24) – Lecture 12 – slide 9



2-SAT Randomized Algorithm - Analysis

We choose to “tweak” the probabilities and study the process
on {0,1,2, . . . ,n} defined by the variable Yt :

Consider the Markov chain Y0,Y1, . . . ,Yt , . . . such that

Y0 = X0;

Pr[Yt+1 = 1 | ((Yt = 0) & ϕ not-sat)] = 1;
Pr[Yt+1 = j + 1 | ((Yt = j) & ϕ not-sat)] = 1/2;
Pr[Yt+1 = j − 1 | ((Yt = j) & ϕ not-sat)] = 1/2.

Clearly the expected number of steps for Xt to hit n is ≤ that for Yt .

RA (2023/24) – Lecture 12 – slide 10



2-SAT Randomized Algorithm - Analysis

For any j = 0, . . . ,n − 1, define hj to be the expected number of steps
to hit n starting from j .

▶ Clearly, the expected number of steps for 2SATRANDOM to find
a satisfying assignment is at most maxj hj (may well be better).

▶ We will bound hj for every j = 0,1, . . . ,n.

RA (2023/24) – Lecture 12 – slide 11



2-SAT Randomized Algorithm - Analysis

We have hn = 0 and h0 = h1 + 1 for the “end cases”.

▶ We will use Zj , for 0,1, . . . ,n − 1, to be the random variable for
the “number of steps” to reach n from j (hj will be E[Zj ]).

▶ For j = 1, . . . ,n − 1, recalling the steps of the “random walk”, and
using linearity of expectation:

E[Zj ] =
1
2
(E[Zj−1] + 1) +

1
2
(E[Zj+1] + 1),

hj =
1
2
(hj+1 + 1 + hj−1 + 1)

This gives us the following system of equations:

hj =
hj−1 + hj+1

2
+ 1 for j = 1, . . . ,n − 1 (1)

Leads to: hj = hj+1 + 2j + 1.

RA (2023/24) – Lecture 12 – slide 12



2-SAT Randomized Algorithm - Analysis
We show by induction that for j = 0, . . . ,n − 1,

hj = hj+1 + 2j + 1.

Proof.
Base case: If j = 0 we have h0 = h1 + 1 that was shown to be true.
Inductive step: Suppose this was true for j = k − 1 (we had
hk−1 = hk + 2(k − 1) + 1, this is our (IH)). Now consider j = k .
By the “middle case” of our system of equations,

hk =
hk−1 + hk+1

2
+ 1

=
hk + 2(k − 1) + 1

2
+

hk+1

2
+ 1 by our (IH)

=
hk

2
+

hk+1

2
+

2k + 1
2

Subtracting hk
2 from each side, this is equivalent to

hk = hk+1 + 2k + 1,

as claimed. RA (2023/24) – Lecture 12 – slide 13



2-SAT Randomized Algorithm - Analysis
Lemma (Lemma 7.1)
Assume that the given 2CNF formula has a satisfying assignment,
and that 2SATRANDOM is allowed to carry out as many iterations as
it wants to find a satisfying assignment. Then the expected number of
iterations to find that assignment is at most n2.

Proof.
We showed that the expected number of iterations is at
most maxj=0,...,n−1{hj }. We now know the max is h0.
Applying hk = hk+1 + 2k + 1 iteratively, we have

h0 =

n−1∑
k=0

(2k + 1) + hn

= 2
n−1∑
k=0

k + n + 0

= 2
(n − 1)n

2
+ n = n2.

RA (2023/24) – Lecture 12 – slide 14



Probability of failure
Theorem
The algorithm 2SATRANDOM perform up to 2mn2 iterations of the
while loop. Then, when there is a satisfying assignment for ϕ, the
probability that 2SATRANDOM does not discover one, is at most 2−m.

Proof.
1. Modify the algorithm to be run m times in parallel over “blocks" of

2n2 size.

2. Markov inequality guarantees a failure of 1/2 for 2E[Z0] = 2n2

iterations per block: P(Z0 > a) ≤ E[Z0]
2 , choose a = 2E[Z0].

3. If one of the m repetition succeeds we find the solution. We get
failure overall only if all the m blocks fail, i.e., Pf = (1/2)m = 2−m.

The algorithm 2SATRANDOM run the 2mn2 in a single loop, but this
can only reach the solution faster: instead of imputing m independent
input to each block, we can feed one block with the output of the
previous one.

RA (2023/24) – Lecture 12 – slide 15


