
Randomized Algorithms
Lecture 13: Monte Carlo Method and DNF

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2023/24) – Lecture 13 – slide 1

The Monte Carlo Method

▶ The Monte Carlo method refers to a collection of tools for
estimating values through sampling and simulation. Monte Carlo
techniques are used extensively in almost all areas of physical
sciences and engineering.

▶ The key ideas:

1. Make you quantity of interest the expectation value of a
probability distribution.

2. Sample from that specific probability distribution to estimate
the expectation value.

▶ Monte Carlo techniques can be used to compute areas and
integrals, as we will see shortly.

RA (2023/24) – Lecture 13 – slide 2

The Monte Carlo Method II

▶ A typical CS scenario for the Monte Carlo Method arises when
the value we want to estimate is the count of the number of
combinatorial structures satisfying a given criterion.

1. We will usually rely on a close relationship between the
problem of counting the number of combinatorial structures
and sampling one of the structures uniformly at random.

▶ A Markov chain can sometimes be employed to do the sampling,
which will be leveraged to estimate our value of interest.

▶ Ideally we want to design efficient (polynomial time) sampling
algorithms.

RA (2023/24) – Lecture 13 – slide 3

Approximate π
(−1,1)

(−1,−1) (1,−1)

(1,1)

(0,0)

1

Algorithm ESTIMATEPI(m)

1. count ← 0
2. for i ← 1 to m
3. draw (X ,Y) uniformly at random from the square

ie draw each of X ,Y uniformly at random from the
continuous distribution on [−1,1]

4. if X 2 + Y 2 ≤ 1 then
5. count ← count + 1
6. return 4·count

m

RA (2023/24) – Lecture 13 – slide 4

Approximate π - Proof via Chernoff bound

Can let Zi be the indicator variable for the “i-th" (X ,Y) lying inside the
circle. Then for Z =

∑m
i=1 Zi ,

E[Z] =

m∑
i=1

E[Zi] = m
π · 12

22 =
πm
4

.

Define new variable Z ′ = 4Z
m , which satisfies E[Z ′] = 4

m E[Z] = π.

RA (2023/24) – Lecture 13 – slide 5

Approximate π - Proof via Chernoff bound

▶ Remember: Z ′ = 4Z
m , which satisfies E[Z ′] = 4

m E[Z] = π.

▶ Better estimate the higher m is.

▶ By Chernoff (4.6) if we have m samples, then for arbitrary
ϵ ∈ (0,1),

Pr[|Z ′ − E[Z ′]| ≥ ϵπ] = Pr
[∣∣Z −

πm
4
∣∣ ≥ ϵπm

4

]
= Pr[|Z − E[Z]| ≥ ϵE[Z]]

≤ 2e−ϵ2πm/12.

▶ We can achieve: 2e−ϵ2πm/12 ≤ δ, if m ≥ 12 ln(2
δ
)

πϵ2 .

▶ Where ϵ is a relative error.
▶ Where δ is the probability of failure of estimate.

RA (2023/24) – Lecture 13 – slide 6

Definition of (ϵ, δ)−approximation

Definition (Definition 11.1)
A randomized algorithm for estimating a (positive) quantity V (usually
depending on certain input parameters) is said to give an (ϵ, δ)
approximation if its output X satisfies

Pr[|X − V | ≥ ϵV] ≤ δ.

▶ The algorithm ESTIMATEPI gives an

(ϵ,2e−ϵ2πm/12)

approximation.

RA (2023/24) – Lecture 13 – slide 7

Monte Carlo Method

Definition (Generalization (Theorem 11.1))
Let X1, . . . ,Xm be independent and identically distributed indicator
random variables (ie Bernoulli with a fixed parameter), and
µ =
∑m

i=1 E[Xi]. Then if m ≥ 3 ln(2
δ
)

ϵ2µ
, we have

Pr

(∣∣ 1
m

m∑
i=1

Xi − µ
∣∣ ≥ ϵµ

)
≤ δ.

So for this m, sampling gives a (ϵ, δ)-approximation of µ.

Definition (FPRAS (Definition 11.2))
A fully polynomial randomized approximation scheme (FPRAS):

▶ Given input x , we want (ϵ, δ)−approximation of V (x).

▶ Achieved in time polynomial in 1/ϵ, in ln(1/δ) and size of x .

RA (2023/24) – Lecture 13 – slide 8

The DNF counting problem
Disjunctive Normal Form (DNF):
▶ each clause is now a conjunction (∧, AND) literals
▶ we have disjunctions (∨, OR) of clauses

For example:

(x1 ∧ x̄2 ∧ x3)∨ (x2 ∧ x4)∨ (x̄1 ∧ x3 ∧ x4).

We are interested in counting the number of satisfying assignments.
▶ It is easy to find satisfying assignments or prove not satisfiable.
▶ It is NP-hard to compute the exact number of satisfying

assignments for a DNF:
▶ we can easily construct a DNF for the negation of the SAT

formula ϕ
▶ The DNF has 2n satisfying assignments⇔ ϕ was

unsatisfiable
▶ Counting DNF assignments is ♯P-complete.
▶ However, we can approximately count them.

RA (2023/24) – Lecture 13 – slide 9

The DNF counting problem - Naïve Approach

▶ let c(F) denote number of satisfying assignments of a given
DNF formula F over n variables.

▶ c(F) will be 0 only if it is the case that every clause contains xi
and x̄i for some i . Easy to notice and eliminate before we start.

▶ Naïve approach to counting DNF assignments is to sample m
uniform random assignments to x1, . . . , xn (from the set {0,1}n)
and check whether F is satisfied for each sample.

▶ The random variable Xi will be 1 if the i-th trial satisfies F , 0
otherwise.

▶ Then we estimate the fraction of these to satisfy F and we
return estimate

ĉ(F) = 2n
∑m

i=1 Xi

m
, (1)

as the estimate of satisfying assignments c(F).

RA (2023/24) – Lecture 13 – slide 10

The DNF counting problem - Naïve Approach

▶ In order for ĉ(F) to be an (ϵ, δ)-approximation for c(F), we
require:

∣∣2n
∑m

i=1 Xi

m
− c(F)

∣∣ ≤ ϵ · c(F)⇔ ∣∣ m∑
i=1

Xi −
mc(F)

2n

∣∣ ≤ ϵ · mc(F)

2n

(2)

▶ by Chernoff this holds⇔ we have m ≥ 3·2n ln(2
δ
)

ϵ2c(F)
.

▶ If c(F) is much much smaller than 2n, then we need a huge
number of samples, as a random assignment is very unlikely to
hit the good assignments.

RA (2023/24) – Lecture 13 – slide 11

FPRAS for DNF counting

Our formula is
F = C1 ∨ C2 ∨ . . .∨ Ct ,

where every Ci is a conjunction of literals.

▶ If Ci contains the literals xj , x̄j for the same j ∈ [n] (opposing
literals), there is no assignment which can satisfy clause Ci .

▶ If Ci does not contain any opposing pair of literals, then Ci is
satisfied by any assignment a ∈ {0,1}n which sets

aj =

 1 Ci contains the positive literal xj
0 Ci contains the negative literal x̄j

0/1 neither xj nor x̄j appear in Ci

▶ Assuming Ci has ℓi literals and no opposing pair, then there are
exactly 2n−ℓi satisfying assignments for Ci .

RA (2023/24) – Lecture 13 – slide 12

Definitions and intuition I

For every clause Ci , we define SCi to be the set of 2n−ℓi assignments
a ∈ {0,1}n which satisfy Ci : U =def {(i ,a) | 1 ≤ i ≤ t and a ∈ SCi }.

▶ The SCi sets are not disjoint, as a satisfying assignment for one
clause may also satisfy a different clause/clauses.

RA (2023/24) – Lecture 13 – slide 13

Definitions and intuition II

▶ To estimate c(F) we need to define a subset S of U of size c(F).
For each assignment a there must be a single pair (i ,a).

▶ We do so by choosing the lowest j that is satisfied by
assignment a.

RA (2023/24) – Lecture 13 – slide 14

Relations between sets

▶ We know how to compute |U | =
∑t

i=1 sn−|Ci |

▶ S is approx. of same size as U: |S|

|U|
≥ 1

t . Key to make the
sampling algorithm efficient.

RA (2023/24) – Lecture 13 – slide 15

Algorithm for sampling DNF assignments

Algorithm APPROXDNF(n;m;C1 ∨ . . .∨ Ct)

1. count ← 0
2. cardU ← 0
3. for i ← 1 to t
4. cardU ← cardU + 2n−|Ci |

5. for k ← 1 to m
6. Choose i with probability 2n−|Ci |

cardU .

7. Sample a ∈ SCi by setting the literals of Ci to the required
values, then randomly generating the other n − |Ci | bits.

8. if (a does not satisfy Ci ′ for any i ′ < i) then
9. count ← count + 1

10. return count
m · (cardU).

RA (2023/24) – Lecture 13 – slide 16

Sampling from U

Pr((i ,a) is chosen) = Pr(i is chosen) · Pr(a is chosen|i is chosen):

=
|SCi |

|U |

1
|SCi |

=
1
|U |

Remember:

▶ Choose i with probability 2n−|Ci |

cardU .

▶ Sample a ∈ SCi by setting the literals of Ci to the required
values, then randomly generating the other n − |Ci | bits.

RA (2023/24) – Lecture 13 – slide 17

FPRAS for DNF counting

Theorem (Theorem 11.2)
Our DNF counting algorithm gives a fully-polynomial randomized
approximation scheme for the DNF counting problem if we set
m = ⌈ 3t

ϵ2 ln(2
δ
)⌉.

Proof.
▶ Using Theorem 11.1, if m ≥ 3 ln(2

δ
)

ϵ2µ
, we have

Pr

(∣∣ 1
m

m∑
i=1

Xi − µ
∣∣ ≥ ϵµ

)
≤ δ

we get a (ϵ, δ)-approximation of µ.

▶ Xi indicator that sample i belongs to subgroup S:
E[Xi] =

c(F)
|U|

≥ 1
t .

RA (2023/24) – Lecture 13 – slide 18

