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The Monte Carlo Method

» The Monte Carlo method refers to a collection of tools for
estimating values through sampling and simulation. Monte Carlo
techniques are used extensively in almost all areas of physical
sciences and engineering.

» The key ideas:

1. Make you quantity of interest the expectation value of a
probability distribution.

2. Sample from that specific probability distribution to estimate
the expectation value.

» Monte Carlo techniques can be used to compute areas and
integrals, as we will see shortly.
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The Monte Carlo Method Il

» A typical CS scenario for the Monte Carlo Method arises when
the value we want to estimate is the count of the number of
combinatorial structures satisfying a given criterion.

1. We will usually rely on a close relationship between the
problem of counting the number of combinatorial structures
and sampling one of the structures uniformly at random.

» A Markov chain can sometimes be employed to do the sampling,
which will be leveraged to estimate our value of interest.

> Ideally we want to design efficient (polynomial time) sampling
algorithms.
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Approximate 7
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Algorithm ESTIMATEPI(m)

1. count — 0
2. fori+—1tom

3. draw (X, Y) uniformly at random from the square
ie draw each of X, Y uniformly at random from the
continuous distribution on [—1,1]

if X2+ Y2 <1 then

5. count «— count + 1
4.

return 2:count

&

o
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Approximate 7t - Proof via Chernoff bound

Can let Z; be the indicator variable for the “i-th" (X, Y) lying inside the
circle. ThenforZ=3%1",Z,

2
BZ) = ) EBZ] = mT - = T,

Define new variable Z’ = 42, which satisfies E[Z’] = 2E[Z] = m.
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Approximate 7t - Proof via Chernoff bound

» Remember: Z’ = %, which satisfies E[Z'] = %E[Z} =T

> Better estimate the higher mis.

» By Chernoff (4.6) if we have m samples, then for arbitrary
€ (0,1),

PIZ' B2 2 en = P[]z T >

= Pr[|Z —E[Z]| > €E[Z]]
< 267e2nm/12.

121In(2
» We can achieve: 2e—€""/12 < § if m > n(z")-

» Where ¢ is a relative error.
> Where & is the probability of failure of estimate.
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Definition of (e, d)—approximation

Definition (Definition 11.1)

A randomized algorithm for estimating a (positive) quantity V (usually
depending on certain input parameters) is said to give an (e, d)
approximation if its output X satisfies

Pr[X — V| > eV] <5.

» The algorithm ESTIMATEPI gives an

(e)2efezvtm/12)

approximation.
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Monte Carlo Method

Definition (Generalization (Theorem 11.1))

Let Xi,..., Xn be independent and identically distributed indicator
random variables (ie Bernoulli with a fixed parameter), and

w=Y ", EX]. Thenif m> 3‘“‘ !, we have

m
Pr(l;’ZXf—ul Z€u> <.

i=1

So for this m, sampling gives a (¢, §)-approximation of .

Definition (FPRAS (Definition 11.2))

A fully polynomial randomized approximation scheme (FPRAS):
» Given input x, we want (e, 6)—approximation of V(x).

» Achieved in time polynomial in 1/¢, in In(1/6) and size of x.
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The DNF counting problem

Disjunctive Normal Form (DNF):
» each clause is now a conjunction (/\, AND) literals
» we have disjunctions (\, OR) of clauses
For example:
(X3 AXe AX3)V (X0 A\ Xa)V (X3 /\ X3 /\ Xg).
We are interested in counting the number of satisfying assignments.
> |tis easy to find satisfying assignments or prove not satisfiable.

» It is NP-hard to compute the exact number of satisfying
assignments for a DNF:

> we can easily construct a DNF for the negation of the SAT
formula ¢

» The DNF has 2" satisfying assignments & ¢ was
unsatisfiable

» Counting DNF assignments is §P-complete.
» However, we can approximately count them.

RA (2023/24) — Lecture 13 — slide 9



The DNF counting problem - Naive Approach

» let ¢(F) denote number of satisfying assignments of a given
DNF formula F over n variables.

» c(F) will be 0 only ifit is the case that every clause contains x;
and x; for some i. Easy to notice and eliminate before we start.

» Naive approach to counting DNF assignments is to sample m
uniform random assignments to x, ..., X, (from the set {0, 1}")
and check whether F is satisfied for each sample.

» The random variable X; will be 1 if the i-th trial satisfies F, 0
otherwise.

» Then we estimate the fraction of these to satisfy F and we
return estimate

eF) = 02t X, "

as the estimate of satisfying assignments c(F).
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The DNF counting problem - Naive Approach

» In order for ¢(F) to be an (e, 8)-approximation for ¢(F), we
require:

C(F)| <e. mc(F)
2n 2n
(2)

m B u
|2n%_c(m\ <ecFely x-"
i1

32"In(%)

» by Chernoff this holds & we have m > ZoF)

» If ¢(F) is much much smaller than 27, then we need a huge
number of samples, as a random assignment is very unlikely to
hit the good assignments.
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FPRAS for DNF counting

Our formula is
F=CVGCV...VGC,

where every C; is a conjunction of literals.

» If C; contains the literals x;, X; for the same j € [n] (opposing
literals), there is no assignment which can satisfy clause C;.

» If C; does not contain any opposing pair of literals, then C; is
satisfied by any assignment a € {0, 1}" which sets

0  C; contains the negative literal x;

1 Cj contains the positive literal x;
a =
0/1 neither x; nor X; appear in C;

» Assuming C; has {; literals and no opposing pair, then there are
exactly 2" satisfying assignments for C;.
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Definitions and intuition |
C U ={Ga) Jasist 2 aeSCG}
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For every clause C;, we define SC; to be the set of 2"~% assignments
a € {0, 1} which satisfy C;: U =g {(i,a) |1 < i < tand a e SC;}.

» The SC; sets are not disjoint, as a satisfying assignment for one
clause may also satisfy a different clause/clauses.
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Definitions and intuition Il
G U={ta]asist g aesG}
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» To estimate ¢(F) we need to define a subset S of U of size ¢(F).
For each assignment a there must be a single pair (/, a).

» We do so by choosing the lowest j that is satisfied by
assignment a.
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Relations between sets

C U ={Ga) Jasist 2 aeSG}

tT - = DlsI<u
e & e . ® @ISl » 1
o o ® S ZU( -b

2 ° = ® ]S{~CI(¥)

’ 2 - 10 &)
— >

S = 75(‘@”\3 | 1cig?, ae SC at SG '\<ll}

> We know how to compute [U] = Y_!_, s"1C

> Sis approx. of same size as U: {5t > 1. Key to make the
sampling algorithm efficient.
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Algorithm for sampling DNF assignments

Algorithm APPROXDNF(n,m; C; V...V Cy)

1. count +— 0
cardU « 0
fori—1tot
cardU « cardU + 2"~ Ci
fork—1tom
Choose i with probability 26;13 .

Sample a € SC; by setting the literals of C; to the required
values, then randomly generating the other n — |C;| bits.

if (a does not satisfy C;. for any i’ < i) then
count « count + 1
10. return <2 . (cardU).

N o g s

©
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Sampling from U
G V={talasist 2 aesSGy
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C (F,) = ) VT
Pr((i,a) is chosen) = Pr(i is chosen) - Pr(ais chosenl|iis chosen):
_lsal 11
Ul 1SCil U

Remember:
> Choose i with probability £,
» Sample a € SC; by setting the literals of C; to the required
values, then randomly generating the other n— |Cj| bits.
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FPRAS for DNF counting

Theorem (Theorem 11.2)

Our DNF counting algorithm gives a fully-polynomial randomized
approximation scheme for the DNF counting problem if we set
m= [% ln(%ﬂ .

Proof.

> Using Theorem 11.1,if m > 31“( ) we have

m
Pr<|,;ZXf—u| Zeu> <3
i=1

we get a (e, b)-approximation of .
» X; indicator that sample i belongs to subgroup S:
E[X] =S5 > 1.

O
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