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Markov chain Monte Carlo (MCMC)

The Markov chain Monte Carlo (MCMC) method provides a very
general approach to sampling from a desired probability distribution.

▶ The idea is to build a Markov chain M on the state space Ω that
we want to sample from.

▶ We ensure the stationary distribution of the Markov chain is
unique and corresponds to the target distribution.

▶ We can then run M to generate a sequence of X0,X1, . . . ,Xk of
states so Xk distribution is the stationary distribution: xk is our
output sample.

▶ How large k has to be to have a valid sample is called
mixing-time.

▶ Knowing the mixing-time of a Markov chain is non-trivial and will
be the core of the last section of the course.
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MCMC for Independent Sets

▶ Given an input graph G = (V ,E), an IS is subsets I ⊆ V which
satisfy |I ∩ {u, v }| = 0 for all u, v such that e = (u, v) ∈ E .

▶ Our interest is to sample from the uniform distribution over the
state space Ω.
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MCMC for Independent Sets: Algorithm

The IS Markov chain generates a random sequence of ISs:

Algorithm GENERATEIS(n;G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. if v ∈ Xi then
5. Xi+1 ← Xi \ {v }
6. elseif (v /∈ Xi and Xi ∪ {v } is also an IS in G) then
7. Xi+1 ← Xi ∪ {v }
8. else Xi+1 ← Xi
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Unique stationary distribution

▶ If a Markov chain is finite, irreducible, aperiodic:

▶ The chain has an unique stationary distribution.

▶ Time-reversal or detailed balance: if
∑∞

i=0 πi = 1 and

πiPi,j = πjPj,i (1)

then π is the stationary distribution of P.

▶ Having unique stationary distribution does not give us a Fully
Polynomial Almost Uniform Sampler (FPAUS) for Ω. We need to
also show the chain is rapidly mixing.
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MCMC for Independent Sets: convergence to
stationary

Algorithm GENERATEIS(n;G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. if v ∈ Xi then
5. Xi+1 ← Xi \ {v }
6. elseif (v /∈ Xi and Xi ∪ {v } is also an IS in G) then
7. Xi+1 ← Xi ∪ {v }
8. else Xi+1 ← Xi

▶ Finite: Yes.
▶ Irreducible: there is always a path between two configurations.
▶ Aperiodicity: ∃ self-loops.
▶ Detail balance?
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MCMC for Independent Sets: Irreducible

▶ For a finite state space Ω. Let call the set of states reachable in
one step from state x the neighbors of x , denoted by N(x).
We also have that if y ∈ N(x) then also x ∈ N(y).

▶ For any starting IS x and final IS y there is always a connecting
path:

▶ All vertices that belong to X ∪ y are divide into: x \ y (in x
but not in y ), x ∩ y (in both) and y \ x (in y but not in x).

▶ To move from configuration x to y , remove all x \ y one by
one and then add all y \ x one by one.

▶ The connecting path has non-zero probability:

▶ Adjacent IS state neighbors differ in a single vertex of G.
Probability of the jump is 1/|V |, i.e., probability you select
the right vertex v allowing the transition.
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MCMC for Independent Sets: Detail balance
From the previous slide, we know MIS has a unique stationary
distribution πIS, but not what it is. We now show it must be the
uniform one.

▶ Detail balance:
∀i , j : πiPi,j = πjPj,i (2)

▶ Adjacent IS state neighbors differ in a single vertex of G.
Assume X = Y + v .
▶ Px,y : we jump from Y to X only if vertex v is selected

(probability 1/|V |) followed by the algorithm
deterministically adding v to X (line 7).

▶ Py,x : we jump from X to Y only if vertex v is selected
(probability 1/|V |) followed by the algorithm
deterministically removing v to Y (line 5).

▶ Because Px,y = Py,x detail balance⇒ πx = πy = 1/|Ω|.

▶ You extend the equality between any pair using the same paths
as be defined for irreducibility.
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From Sampling to Approximate Counting

Last lecture DNF was an example of uniform sampling from the target
set that can be used to obtain an FPRAS to approximately count the
elements:

Estimation of |S| =
#a ∈ S

m
|U |

In what follows we are going to explore how to transform a sampling
algorithm into a counting one.

▶ Won’t always have an immediately-samplable “superset" like U
whose cardinality is bigger by a low factor like T .

▶ Won’t always be able to do exact uniform sampling from the
bigger set, that may sometimes be almost-uniform instead.

RC (2023/24) – Lecture 14 – slide 9



ϵ-uniform sampler and FPAUS

Definition (Definition 11.3)
Let ω be the (random) output of a sampling algorithm for a finite
sample space Ω. Then a sampling algorithm is said to generate an
ϵ-uniform sample of Ω if for every S ⊂ Ω,∣∣Pr[ω ∈ S] − |S|

|Ω|

∣∣ ≤ ϵ.

Definition (FPAUS)
A sampling algorithm is a fully-polynomial almost uniform sampler
(FPAUS) for a problem if, given input x and a parameter ϵ > 0, it
generates a ϵ-uniform sample of Ω(x) after running in time
polynomial in ln( 1

ϵ
) and the size of x .
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Independent sets ordering
Imagine that we have an “off the shelf" fully polynomial approximation
uniform sampler (FPAUS) for sampling independent sets of an input
graph. We show how to create a fully polynomial approximation
scheme (FPRAS) from this.

Definition (IS)
For a given undirected graph G = (V ,E), the subset I ⊆ V is said to
be an independent set if for every e ∈ E ,e = (u, v), at most one
of u, v lie in I.

Definition (Ordering of IS)
For a given graph G = (V ,E) consider some ordering e1,e2, . . . ,em
of the edges of E .

▶ For every i = 1, . . . ,m, set Ei = ∪i
j=1{ej }, and Gi = (V ,Ei).

▶ Let Ω(Gi) be the number of Independent sets in Gi .

Observe that G0 is an n-vertex graph with no edges, and Gm is G.
Each Gi+1 is Gi with an extra edge added.
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Telescopic product

Now consider the following telescoping product:

|Ω(G)| =
|Ω(Gm)|

|Ω(Gm−1)|
× |Ω(Gm−1)|

|Ω(Gm−2)|
× |Ω(Gm−2)|

|Ω(Gm−3)|
×. . .× |Ω(G1)|

|Ω(G0)|
×|Ω(G0)|.

▶ |Ω(G0)| = 2n as every subset of V is an I.S. for G0 (G0 has no
edges!).

▶ We will show how to obtain close approximate values r̃i for each
ratio ri =

|Ω(Gi)|
|Ω(Gi−1)|

, for i = 1, . . . ,m.

▶ Our estimate for the number of I.S.s will be:

2n
m∏

i=1

r̃i .
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Proof of FPRAS via telescopic product
It is possible to show the following lemma:

Lemma (Lemma 11.4)
When m ≥ 1 and 0 < ϵ ≤ 1, ∃ a ( ϵ

2m , δ
m )-approximation for the

quantity ri using Algorithm ESTIMRATIO.

1. We run Algorithm ESTIMRATIO for each |Ω(Gi)|
|Ω(Gi−1)|

to obtain
estimates r̃m, r̃m−1, . . . , r̃2, r̃1.

2. By Lemma 11.4, Pr[| r̃i
ri
− 1| > ϵ

2m ] ≤ δ
m , for every 1 ≤ i ≤ m.

3. Pr[∩m
i=1|

r̃i
ri
− 1| < ϵ

2m ] = 1 − Pr [∪m
i=1|

r̃i
ri
− 1| > ϵ

2m ]

4. Hence (Union Bound on bad events):
Pr [∩m

i=1|
r̃i
ri
− 1| < ϵ

2m ] ≥ 1 −
∑m

i=1 Pr [| r̃i
ri
− 1| > ϵ

2m ] ≥ 1 − δ.

5. So with probability of at least 1 − δ, we have:(
1 −

ϵ

2m

)m
≤

m∏
i=1

r̃i

ri
≤

(
1 +

ϵ

2m

)m
.
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Proof of FPRAS via telescopic product II

1. So with probability of at least 1 − δ, we have:

(
1 −

ϵ

2m

)m
≤

m∏
i=1

r̃i

ri
≤

(
1 +

ϵ

2m

)m
.

2. Easy to show (for ϵ < 1): 1 − ϵ ≤ (1 − ϵ
2m )m

3. Easy to show (for ϵ < 1): (1 + ϵ
2m )m ≤ 1 + ϵ

4. Hence we have

1 − ϵ ≤
∏m

i=1
r̃i
ri

≤ 1 + ϵ,

(1 − ϵ)2n
m∏

i=1

ri ≤ 2n∏m
i=1 r̃i ≤ (1 + ϵ)2n

m∏
i=1

ri

5. We have an FPRAS for counting IS on G, i.e, |Ω(G)| with ϵ
relative error with probability of failure of δ.
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Algorithm ESTIMRATIO

▶ Key idea: sample from Ω(Gi−1) and check if in Ω(Gi).

▶ Uses the assumed FPAUS as a subroutine in step 4.

Algorithm ESTIMRATIO(Gi−1 = (V ,Ei−1);ei)

1. count ← 0
2. Gi ← (V ,Ei−1 ∪ {ei })

3. for k ← 1 to M = ⌈1296m2ϵ−2 ln( 2m
δ
)⌉

4. Generate a ϵ
6m -uniform sample from Ω(Gi−1).

5. if (the sample generated is also an I.S for Gi ) then
6. count ← count + 1
7. return r̃i ← count

M

We will compute a r̃i that is within ± ϵ
2m of the true value with

probability at least 1 − δ
m , for each i ,1 ≤ i ≤ m.

RC (2023/24) – Lecture 14 – slide 15



Intuition of Lemma 11.4

▶ Gi−1 and Gi differ in a single edge {u, v }.

▶ An IS of Gi−1 is also IS of Gi : Ω(Gi) ⊆ Ω(Gi−1).

▶ An independent set in Ω(Gi−1) \Ω(Gi) contains both u and v :

▶ If it contains only one or none it belongs to Ω(Gi) already.

▶ We can associate to each IS I ∈ Ω(Gi−1) \Ω(Gi) with an IS
I \ {v } ∈ Ω(Gi) (remove v ), therefore:

Ω(Gi−1) \Ω(Gi) ⊆ Ω(Gi)

▶ We finally obtain:

ri =
|Ω(Gi)|

|Ω(Gi−1)|
=

|Ω(Gi)|

|Ω(Gi)|+ |Ω(Gi−1) \Ω(Gi)|
≥ 1

2

▶ Further technical details are needed due to the sampling from
Ω(Gi−1) nor being exact.
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