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MCMC for Independent Sets (Recap)

The IS Markov chain generates a uniform random sequence of ISs:

Algorithm GENERATEIS(n;G = (V, E))

1. Start with an arbitrary IS X

2. for i« 0to “whenever"

3. Choose v uniformly at random from V.

if v € X; then
Xiv1 & Xi\{v}

elseif (v ¢ Xjand X; U{v}is also an IS in G) then
X1 — XiUu{v}

else Xi,1 «— X;

© N A
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Discussion of update

1. The difference between X; and X;, 1 is in at most 1 vertex.
2. Update need to be a valid IS.

3. Probability of jumping between two IS is either zero or 1/|V].

G =(vg) S

Q)
<

%
T= X+v
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Metropolis equivalent form

> {N(X)|x € Q}is the set of ISs that differ from x in a single vertex.
» Assume X +v =Y We have Py, = P, x = 1/|V|

> P, ,:wejump from X to Y only if vertex v is selected
(probability 1/|V|) followed by the algorithm
deterministically adding v to X (line 7).

> P, x: we jump from Y to X only if vertex v is selected
(probability 1/|V]) followed by the algorithm
deterministically removing v to Y (line 5).

1/1V] if x # y andy € N(x).

Pvy=40 if x # y andy ¢ N(x). (1)
1—INII/IVE ifx=y
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Metropolis for uniform sampling

For a finite state space Q and neighborhood structure {N(X)|x € Q},
let N = maxycq |N(x)|. Let M be any number such that M > N.
Consider a Markov chain where

1/M if x £y andy € N(x).
Pey=10 if x # y andy ¢ N(x). 2)
1—INXx)|/M ifx=y

If this chain is irreducible and aperiodic, then the stationary
distribution is the uniform distribution.
» For x # y we have Py, = P, x = 1/M, implies m, = 7, = 1/]Q].

» Previous IS example we had M = V.
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The Metropolis Algorithm

We may want to sample from a nonuniform distribution.

For a finite state space QQ and neighborhood structure
{N(X)|x € Q}, let N = maxycq |N(x)|. Let M be any number
such that M > N. For all x € Q, let ty > 0 be the desired
probability of state x in the stationary distribution. Consider a
Markov chain where

1/Mmin(1,7t,/7y)  if x # y andy € N(x).
Pxy =<0 if x4 yandy ¢ N(x). (3)
T=2 ) Pxy if x =y (rejection)

MC finite, irreducible and aperiodic: 7t stationary distribution.
» We do not need to know 7ty or 7y, but only their ratio 7t, /7!
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The Metropolis Algorithm: proof by detail balance

1/Mmin(1, 7, /7y) if x £y andy € N(x).
Pyy=1<0 if x# yandy ¢ N(x). (4)
1_Zy;£x'DX»y ifx =y

Proof.
We want to prove detail balance. For x # y:

_ Ty __ us —
:> T[XPva - WX _ﬂyﬂy)/(w —T[yPy)X.
» If 7ty > 7,0 very similar proof.
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Example: Independent sets (also Hardcore model)

We want to sample from independent sets x with probability

7.[X - A‘X‘/Z) (5)
i.e., its Gibbs distribution.
> |x| is the size of the IS x.
» A > 0 a constant parameter

» Z =3 Al is a normalization constant.
Hard to compute, but we do not need it to sample!
The value of A bias the distribution:

> A =1, uniform distribution.
> A > 1 larger IS have larger probability.
» A < 1 smaller IS have larger probability.
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Metropolis for independent sets (Gibbs distribution)
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Metropolis for Hardcore model Il

Algorithm METRoOPOLISIS(n, G = (V, E))
1. Start with an arbitrary IS Xp

2. for i« 0 to “whenever"

3 Choose v uniformly at random from V.

4 if v € X; then

5. Xir1 — X;j \ {v} with probability ?

6. elseif (v ¢ X; and X; U{v}is also an IS in G) then

7 Xir1 — Xj U{v} with probability ?

8 else Xi,1 « X;

» Remember: m, = AXI/Z.

>
1/Mmin(1, 7, /mty) if x # y andy € N(x).

Pvy=40 if x#yandy ¢ N(x). (6)

1_Zy7éxPX,y ifx=y
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Metropolis for Hardcore model IlI

Algorithm METROPOLISIS(n, G = (V, E))
1. Start with an arbitrary IS X
2. for i« 0 to “whenever"
3. Choose v uniformly at random from V.
if v € X; then
Xir1 < Xj\ {v} with probability min(1,1/A)
elseif (v ¢ X; and X; U{v}is also an IS in G) then
Xir1 — Xj U{v} with probability min(1,7)
else Xi. 1 «— X

© N> oA

» Remark M = |V| again.

> ﬂ_}@}/\

Tix AlXI

> Itis crucial that at any moment we need to compute Z = ", AX.
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Glauber Dynamics

» Let V and S be finite sets and suppose Q C SV.
Ex: V vertices of a graph and S a set of colors (graph coloring).

> Let 7t be a probability distribution whose support is Q.

» The Glauber chain moves from state x as follows:
1. An element v is chosen uniformly at random from V.
2. A new state y is chosen s.t.: y(w) = x(w)Vw # v.

Definition
Givenxe Q,veV:Q(x,v)={ye Q:y(w)=x(w)Vw # v}. The
chain transition reads:

m(y) ify € O(x,v
Py, = n(ylQ(x,v)) = { 7@ Y (x,v) @
0 ity & Q(x,v)
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Glauber Dynamics for graph coloring

G - (v &) B

S—-{, ) ©, T I\}\}(x\
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Glauber Dynamics for uniform independent sets

Algorithm GLAUBERIS(n; G = (V, E))
1. Start with an arbitrary IS Xy
2. for i« 0to “whenever"
3. Choose v uniformly at random from V.
Set X;,1(w) = Xp(w) VwH#v
ifdw’ € N(v) such that X;(w’) = 1 then
X1 (v) =0
elseGenerate a random bit b
ifb =1 then X; ¢(v) =1
elseX;,{(v) =0.

© oo N OA

» When y(v) = 1 leads to a valid IS, also does y(v) = 0.
Uniform distribution = p(y(v) =0) =p(y(v) =1) =1/2.
» If y(v) =1 notvalid: then y(v) = 0 always is an IS (x is).
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Comparing Metropolis and Glauber Dynamics.

» Consider the following Metropolis algorithm for uniform
sampling of IS:

1. Pick one vertex v uniformly at random.

2. Vw# v:y(w) = x(w)

3. Select y(v) =0 or y(v) = 1 with probability 1/2.

4. Ify ¢ Qrejectit.

» In this scenario M = |V| and 7, /7ty € {0, 1}.
» Metropolis is equivalent to previous Glauber:

» Whenever a neighbors of v has value 1 we can predict with
certainty that the new value in v will be y(v) = 0 whether
there is rejection or not (x(v) = 0 due to neighbors).

> |f all neighbors are 0Os, there will be no rejection.

> We will see in the tutorial an example where Metropolis
and Glauber for same distribution 7t lead to different
Markov chains (graph coloring).
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