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MCMC for Independent Sets (Recap)

The IS Markov chain generates a uniform random sequence of ISs:

Algorithm GENERATEIS(n;G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. if v ∈ Xi then
5. Xi+1 ← Xi \ {v }
6. elseif (v /∈ Xi and Xi ∪ {v } is also an IS in G) then
7. Xi+1 ← Xi ∪ {v }
8. else Xi+1 ← Xi
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Discussion of update

1. The difference between Xi and Xi+1 is in at most 1 vertex.

2. Update need to be a valid IS.

3. Probability of jumping between two IS is either zero or 1/|V |.
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Metropolis equivalent form

▶ {N(X )|x ∈ Ω} is the set of ISs that differ from x in a single vertex.

▶ Assume X + v = Y We have Px,y = Py,x = 1/|V |:

▶ Px,y : we jump from X to Y only if vertex v is selected
(probability 1/|V |) followed by the algorithm
deterministically adding v to X (line 7).

▶ Py,x : we jump from Y to X only if vertex v is selected
(probability 1/|V |) followed by the algorithm
deterministically removing v to Y (line 5).

Px,y =


1/|V | if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 − |N(x)|/|V | if x = y

(1)
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Metropolis for uniform sampling

For a finite state space Ω and neighborhood structure {N(X )|x ∈ Ω},
let N = maxx∈Ω |N(x)|. Let M be any number such that M ≥ N.
Consider a Markov chain where

Px,y =


1/M if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 − |N(x)|/M if x = y

(2)

If this chain is irreducible and aperiodic, then the stationary
distribution is the uniform distribution.

▶ For x ̸= y we have Px,y = Py,x = 1/M, implies πx = πy = 1/|Ω|.

▶ Previous IS example we had M = V .
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The Metropolis Algorithm

We may want to sample from a nonuniform distribution.

For a finite state space Ω and neighborhood structure
{N(X )|x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any number
such that M ≥ N. For all x ∈ Ω, let πx > 0 be the desired
probability of state x in the stationary distribution. Consider a
Markov chain where

Px ,y =


1/M min(1, πy/πx) if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 −
∑

y ̸=x Px ,y if x = y (rejection)
(3)

MC finite, irreducible and aperiodic: π stationary distribution.
▶ We do not need to know πx or πy , but only their ratio πx/πy !
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The Metropolis Algorithm: proof by detail balance

Px ,y =


1/M min(1, πy/πx) if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 −
∑

y ̸=x Px ,y if x = y
(4)

Proof.
We want to prove detail balance. For x ̸= y :
▶ If πx ≤ πy : Px ,y = 1/M and Py ,x = πx/(πyM)⇒ πxPx ,y = πx

M = πy
πx
πy M = πyPy ,x .

▶ If πx > πy : very similar proof.
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Example: Independent sets (also Hardcore model)

We want to sample from independent sets x with probability

πx = λ|x |/Z , (5)

i.e., its Gibbs distribution.
▶ |x | is the size of the IS x .
▶ λ > 0 a constant parameter
▶ Z =

∑
x λ

|x | is a normalization constant.
Hard to compute, but we do not need it to sample!

The value of λ bias the distribution:
▶ λ = 1, uniform distribution.
▶ λ > 1 larger IS have larger probability.
▶ λ < 1 smaller IS have larger probability.
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Metropolis for independent sets (Gibbs distribution)
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Metropolis for Hardcore model II

Algorithm METROPOLISIS(n;G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. if v ∈ Xi then
5. Xi+1 ← Xi \ {v } with probability ?
6. elseif (v /∈ Xi and Xi ∪ {v } is also an IS in G) then
7. Xi+1 ← Xi ∪ {v } with probability ?
8. else Xi+1 ← Xi

▶ Remember: πx = λ|x |/Z .
▶

Px,y =


1/M min(1, πy/πx) if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 −
∑

y ̸=x Px,y if x = y
(6)
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Metropolis for Hardcore model III

Algorithm METROPOLISIS(n;G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. if v ∈ Xi then
5. Xi+1 ← Xi \ {v } with probability min(1,1/λ)
6. elseif (v /∈ Xi and Xi ∪ {v } is also an IS in G) then
7. Xi+1 ← Xi ∪ {v } with probability min(1, λ)
8. else Xi+1 ← Xi

▶ Remark M = |V | again.

▶ πy
πx

= λ|y|

λ|x|

▶ It is crucial that at any moment we need to compute Z =
∑

x λ
|x |.
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Glauber Dynamics

▶ Let V and S be finite sets and suppose Ω ⊆ SV .
Ex: V vertices of a graph and S a set of colors (graph coloring).

▶ Let π be a probability distribution whose support is Ω.

▶ The Glauber chain moves from state x as follows:

1. An element v is chosen uniformly at random from V .
2. A new state y is chosen s.t.: y(w) = x(w)∀w ̸= v .

Definition
Given x ∈ Ω, v ∈ V : Ω(x , v) = {y ∈ Ω : y(w) = x(w)∀w ̸= v }. The
chain transition reads:

Px,y = π(y |Ω(x , v)) =

{
π(y)

π(Ω(x,v)) if y ∈ Ω(x , v)
0 if y /∈ Ω(x , v)

(7)
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Glauber Dynamics for graph coloring

RA (2023/24) – Lecture 15 – slide 13



Glauber Dynamics for uniform independent sets

Algorithm GLAUBERIS(n;G = (V ,E))

1. Start with an arbitrary IS X0
2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. Set Xt+1(w) = Xt(w) ∀w ̸= v
5. if∃w ′ ∈ N(v) such that Xt(w ′) = 1 then
6. Xt+1(v) = 0
7. elseGenerate a random bit b
8. ifb = 1 then Xt+1(v) = 1
9. elseXt+1(v) = 0.

▶ When y(v) = 1 leads to a valid IS, also does y(v) = 0.
Uniform distribution⇒ p(y(v) = 0) = p(y(v) = 1) = 1/2.

▶ If y(v) = 1 not valid: then y(v) = 0 always is an IS (x is).
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Comparing Metropolis and Glauber Dynamics.

▶ Consider the following Metropolis algorithm for uniform
sampling of IS:

1. Pick one vertex v uniformly at random.
2. ∀w ̸= v : y(w) = x(w)
3. Select y(v) = 0 or y(v) = 1 with probability 1/2.
4. If y /∈ Ω reject it.

▶ In this scenario M = |V | and πy/πx ∈ {0,1}.
▶ Metropolis is equivalent to previous Glauber:

▶ Whenever a neighbors of v has value 1 we can predict with
certainty that the new value in v will be y(v) = 0 whether
there is rejection or not (x(v) = 0 due to neighbors).

▶ If all neighbors are 0s, there will be no rejection.
▶ We will see in the tutorial an example where Metropolis

and Glauber for same distribution π lead to different
Markov chains (graph coloring).
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