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Markov chain and mixing times

▶ Sampling from a given probability distribution is a fundamental
algorithmic tool.

▶ We have seen that in some cases one can design a Markov
chain that has as stationary distribution our target distribution.

▶ After sufficiently many steps we converge to the target
distribution regardless of the initial state.

▶ To achieve our goal, we need to have a guarantee of the
convergence to the target distribution, this will be the goal of this
and next lecture.

1. This lecture: notion of distance + coupling as a tool to prove
mixing times.

2. Next lecture: path coupling to prove mixing times.
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Total variation distance
Definition (Definition 12.1)
The total variation distance between two distributions D1 and D2 on a
countable state space S is given by

∥D1 − D2∥ =
1
2

∑
x∈S

|D1(x) − D2(x)|.

Properties:

1. Triangle inequality: ∥D1 − D3∥ ≤ ∥D1 − D2∥+ ∥D2 − D3∥
2. ∥D1 − D2∥ = 0 only if D1 = D2.

3. 0 ≤ ∥D1 − D2∥ ≤ 1

▶ π being the stationary distribution of a Markov chain M. We want
to bound the distance between the distribution of the chain after
t steps when starting at state x , i.e., bound ∥pt

x − π∥.
▶ We want to show that it becomes ϵ small in number of steps t

polynomial on the size of the problem.
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Examples

▶ Two biased coins:

1. {p(0) = p,p(1) = 1 − p},
2. {q(0) = 1 − p,q(1) = p} (where 0 ≤ p ≤ 1/2),

||p − q|| = 1
2 (|p − (1 − p)|+ |1 − p − p|) = 1 − 2p.

▶ Non-overlapping supports:

1. For all W ⊆ A, D1(W ) > 0 and D2(W ) = 0,
2. where for all W ⊆ Ā, D1(W ) = 0 and D2(W ) ≥ 0.

∥D1 − D2∥ =
1
2

∑
x∈S

|D1(x) − D2(x)|

=
1
2

∑
x∈A

D1(x) +
1
2

∑
x∈Ā

D2(x) = 1
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Operational interpretation
Definition (Lemma 12.1)

∥D1 − D2∥ =
1
2

∑
x∈S

|D1(x) − D2(x)|.

For any A ⊆ S let Di(A) =
∑

x∈A Di(x), i.e., the weight of subspace A.
Then

∥D1 − D2∥ = max
A⊆S

|D1(A) − D2(A)|. (1)

1. For any B ⊆ S we have ∥D1 − D2∥ ≥ |D1(B) − D2(B)|.
▶ It can also used to proved non-convergence: if ∃B, s.t.

|D1(B) − D2(B)| > c then also ∥D1 − D2∥ > c.

2. If ∥D1 − D2∥ ≤ ϵ: D1 and D2 can not be distinguish up to error ϵ,
i.e., whether you sample from one or the other is
indistinguishable on any subset B ⊆ S!
▶ Probability of guessing distribution 1 or 2 right:

Pmax
guess = 1

2 (1 + ∥D1 − D2∥)
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Proof of Lemma 12.1

▶ ∥D1 − D2∥ = 1
2

∑
x∈S |D1(x) − D2(x)|.

▶ A ⊆ S : ∥D1 − D2∥ = maxA⊆S |D1(A) − D2(A)|.

Proof.
1. Let S+ ⊆ S s.t. D1(x) ≥ D2(x) and S− complement

2. maxA⊆S D1(A) − D2(A) = D1(S+) − D2(S+)

3. maxA⊆S D2(A) − D1(A) = D2(S−) − D1(S−)

4. D1(S+) + D1(S−) = 1 = D2(S+) + D2(S−)

▶ D1(S+) − D2(S+) = D2(S−) − D1(S−)

5. maxS⊆S |D1(A)−D2(A)| = |D1(S+)−D2(S+)| = |D1(S−)−D2(S−)|

6. |D1(S+) − D2(S+)|+ |D1(S−) − D2(S−)| = 2||D1 − D2|| (Def. TV)
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Mixing time
Definition (Definition 12.2)
Let M be a finite, irreducible and aperiodic Markov chain over the
state space Ω and let π be its stationary distribution. We define
∆x(t), ∆(t) as

∆x(t) = ∥M t [x , ·] − π∥, ∆(t) = max
x∈Ω

∆x(t).

We also define

τx(ϵ) = min{t : ∆x(t) ≤ ϵ}, τ(ϵ) = max
x∈Ω

τx(ϵ).

1. τ(ϵ) is called mixing time.

2. A chain is rapidly mixing if τ(ϵ) is polynomial in log(1/ϵ) and the
size of the problem.

3. There are two main techniques for upper-bounding mixing time:
▶ Coupling: nice tight bounds when it works.
▶ Conductance: worse bounds, works on a larger pool.
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Coupling as upper-bound of TV distance
Definition (Definition 12.2)
A coupling of two probability distributions µ and ν is a pair of random
variables (X ,Y ) defined on a single probability space, i.e., a joint
probability distribution q on Ω×Ω such that∑

y∈Ω

q(x , y) = µ(x)and
∑
x∈Ω

q(x , y) = ν(x) (2)

Definition (Lemma 12.3)
Given distributions µ(x) and ν(x) on state space Ω. All couplings
(X ,Y ) satisfy the condition

inf Pr(X ̸= Y ) ≥ ∥µ− ν∥. (3)

▶ This will allow us to upper-bound distances between two Markov
chains at step t , and also with respect to the stationary
distribution, which leads to upper-bounds on mixing times.
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Coupling example I

Coupling:
∑
y∈Ω

q(x , y) = µ(x) and
∑
x∈Ω

q(x , y) = ν(x)

Bound on TV: inf Pr(X ̸= Y ) ≥ ∥µ− ν∥

Consider two fair coins: µ(x) = ν(x) = c(x) = 1/2.
It is trivial to see that ∥µ− ν∥ = ∥c − c∥ = 0 as both are equal.
A trivial coupling consist of two independent coins

▶ Because q(x , y) = c(x)c(y) ⇒ ∑
y∈Ω q(x , y) = c(x) = 1/2.

▶ Remark that Pr(X ̸= Y ) = 1/2 > 0 = ∥µ− ν∥
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Coupling example II

Coupling:
∑
y∈Ω

q(x , y) = µ(x) and
∑
x∈Ω

q(x , y) = ν(x)

Bound on TV: inf Pr(X ̸= Y ) ≥ ∥µ− ν∥

Consider two fair coins: µ(x) = ν(x) = c(x) = 1/2.
It is trivial to see that ∥µ− ν∥ = ∥c − c∥ = 0 as both are equal.
Consider now a perfectly correlated coin:

▶ Because q(0,0) = q(1,1) = 1/2 ⇒ ∑
y∈Ω q(x , y) = c(x) = 1/2.

▶ Remark that Pr(X ̸= Y ) = 0 = ∥µ− ν∥

▶ Can we saturated the lower-bound building correlated joint
distribution!
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Coupling example III

Consider the distributions
1. {µ(0) = 3/4, µ(1) = 1/4}
2. {ν(0) = 1/4, ν(1) = 3/4}

▶ Remark that ||µ− ν|| = 1/2.
▶ The following algorithm generates a coupling.

Algorithm COUPLING COINS()

1. Generate a random bit with p(b1 = 0) = 1/2.
2. ifb1 = 0 then

Generate perfect random bit b2 and fix X = Y = b2.
3. else

Fix X = 0 and Y = 1

▶ Always ∃ a coupling saturating |D1 − D2||
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Proof Lemma 12.3 (upper-bound)
▶ A ⊆ S : ∥µ− ν∥ = maxA⊆S |µ(A) − ν(A)|.

▶ Bound on TV: inf Pr(X ̸= Y ) ≥ ∥µ− ν∥

Proof.
1. µ(A) − ν(A) = Pr{X ∈ A}− Pr{Y ∈ A}

2.

µ(A) − ν(A) = (Pr{X ∈ A, y ∈ A}+ Pr{X ∈ A,Y /∈ A}) −
(Pr{X ∈ A,Y ∈ A}+ Pr{X /∈ A,Y ∈ A})

= Pr{X ∈ A,Y /∈ A}− Pr{X /∈ A,Y ∈ A}
≤ Pr{X /∈ A,Y ∈ A}
≤ Pr{X ̸= Y }

It has to hold for all coupling (X ,Y ), including the one that provides
the minimum of Pr(X ̸= Y ).
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Coupling of Markov chains

1. We have two chains Xt and Yt that independently behave like
the original one, governed by the transition rule P.

2. We couple the chains X and Y , on a joint chain Z = (X ,Y ).

3. We design a Markov process M acting on Z (both X and Y ),
such that locally on each chain it still behaves as P, but globally
the process is correlated.

▶ Pr(Xt+1 = x ′|Zt = (x , y)) = P(x , x ′),
▶ Pr(Yt+1 = y ′|Zt = (x , y)) = P(x , x ′).

4. We are interested in chains that:

▶ Bring the two copies of the chain to the same state
▶ Once in same state they will make exactly the same move

and remain equal
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Coupling Lemma

Lemma (Lemma 12.2|Coupling lemma)
Let Zt = (Xt ,Yt) be a coupling for a Markov chain M on a state space
S. Suppose there is a T such that, for every x , y ∈ S,

Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ ϵ

Then
τ(ϵ) ≤ T .
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Shuffling cards
▶ We want to couple two chains: think of having two decks of card

arranged in different configurations X0 and Y0.
▶ Each configuration is a given arrangement of the cards of a deck.
▶ Coupling:

1. Choose a position j uniformly at random from deck 1 and
then generate Xt+1 from Xt by moving the j-th card to the
top. Let’s call that card C.

2. Search for card C on the second deck and move it to the
top to obtain Yt+1 from Yt .

▶ The movements of card when looking at the deck independently
is a standard reshuffling of card with probability 1/n.

▶ Once a card is moved to the top it follows the same trajectory on
both decks.

▶ Mixing when all cards have been moved to the top.
▶ We have mapped the problem to coupon collector:

τ(ϵ) = n log(n/ϵ).

RA (2023/24) – Lecture 16 – slide 15



Lazy random Walk on Hypercube

▶ Lazy random walk on the hypercube x̄ = (x1, x2, ..., xn).

1. Select a coordinate uniformly at random from 1 to n.
2. Set the value to 0 or 1 with equal probability 1/2.

▶ Remark that with probability 1/2 you remain in the same
configuration ⇒ aperiodicity.

▶ Coupling between Xt and Yt via implementing the same move
on both chains.

▶ Once the i-th coordinate chosen both chain will agree on i in
future moves.

▶ The problem is again mapped to a coupon collector:
τ(ϵ) = n log(n/ϵ).
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Path coupling: the big picture (Book section 12.6)
Neighborhood: states y ∈ Ω reachable from x in a single step.
▶ Distance d(X ,Y ): the amount of steps to reach y from x .

Neighbors if d(X ,Y ) = 1. Many times d(X ,Y ) ≤ |V |.
▶ Distance at step t of MC: dt = d(Xt ,Yt)

▶ Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ maxx,y Pr(dT ≥ 1) ≤ maxx,y E [dT ]

▶ Our goal is to bound maxx,y E[dT ] ≤ ϵ.
▶ After some work...
▶ E[dt+1] =≤ βE[dt ], with β < 1 (Contraction of expect. distance)
▶ Iterate E[dT ] =≤ βT d0 ≤ βT |V |

Therefore the chain is guaranteed to have mixed for all times, such
that βT |V | ≤ ϵ, leading to

τ(ϵ) =
1

log(1/β)
(log |V |+ log(1/ϵ)) .

Many times we can write β = e−α/|V |, leading to
τ(ϵ) = |V |

α
(log |V |+ log(1/ϵ)), where α can itself depend on

parameters of the problem.
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Coupling Lemma

Lemma (Lemma 12.2|Coupling lemma)
Let Zt = (Xt ,Yt) be a coupling for a Markov chain M on a state space
S. Suppose there is a T such that, for every x , y ∈ S,

Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ ϵ

Then
τ(ϵ) ≤ T .
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Proof of Lemma 12.2: Coupling lemma

▶ Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ ϵ ⇒ τ(ϵ) ≤ T

▶ Choose Y0 according the uniform distribution and X0 takes an
arbitrary value. For T , ϵ such that lemma is satisfied and for any
A ⊆ S:

Pr(XT ∈ A) ≥ Pr((XT = YT ) ∩ (YT ∈ A))
= 1 − Pr((XT ̸= YT ) ∪ YT /∈ A)
≥ (1 − Pr(YT /∈ A)) − Pr(XT ̸= YT )

≥ Pr(YT ∈ A) − ϵ

= π(A) − ϵ

▶ The same argument for S −A shows: Pr(XT /∈ A) ≥ π(S −A) − ϵ
or equivalently Pr(XT ∈ A) ≤ π(A) + ϵ.

▶ It follows:
||pT

x − π|| = max
x,A

|pT
x (A) − π(A)| ≤ ϵ.

RA (2023/24) – Lecture 16 – slide 19


