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Recap: TV and Coupling

Our goal: We want to sample from a MC with stationary distribution π
in time poly(n) and log(1/ϵ).

▶ TV distance: ∥D1 − D2∥ = 1
2

∑
x∈Ω |D1(x) − D2(x)|

▶ Lower bound mixing time:
|D1(A) − D2(A)| ≤ maxA⊆Ω |D1(A) − D2(A)| = ||D1 − D2||

▶ Upper-bounds on mixing time (Coupling):
||D1 − D2|| ≤ inf Pr(X ̸= Y ) for a coupling (X ,Y ) of D1 and D2.

▶ We want to prove that ∥P t(x , ·) − π∥ ≤ ϵ fast enough

▶ Coupling lemma:
Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ ϵ ⇒ τ(ϵ) ≤ T
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Mixing time

Definition (Definition 12.2)
Let M be a finite, irreducible and aperiodic Markov chain over the
state space Ω and let π be its stationary distribution. We define
∆x(t), ∆(t) as

∆x(t) = ∥M t [x , ·] − π∥, ∆(t) = max
x∈Ω

∆x(t).

We also define

τx(ϵ) = min{t : ∆x(t) ≤ ϵ}, τ(ϵ) = max
x∈Ω

τx(ϵ).

1. τ(ϵ) is called mixing time.

2. A chain is rapidly mixing if τ(ϵ) is polynomial in log(1/ϵ) and the
size of the problem.
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Coupling as upper-bound of TV distance
Definition (Definition 12.2)
A coupling of two probability distributions µ and ν is a pair of random
variables (X ,Y ) defined on a single probability space, i.e., a joint
probability distribution q on Ω×Ω such that∑

y∈Ω

q(x , y) = µ(x)and
∑
x∈Ω

q(x , y) = ν(x) (1)

Definition (Lemma 12.3)
Given distributions µ(x) and ν(x) on state space Ω. All couplings
(X ,Y ) satisfy the condition

inf Pr(X ̸= Y ) ≥ ∥µ− ν∥. (2)

▶ This will allow us to upper-bound distances between two Markov
chains at step t , and also with respect to the stationary
distribution, which leads to upper-bounds on mixing times.
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Path coupling: the big picture (Book section 12.6)
Neighborhood: states y ∈ Ω reachable from x in a single step.
▶ Distance d(X ,Y ): the amount of steps to reach y from x .

Neighbors if d(X ,Y ) = 1. Many times d(X ,Y ) ≤ |V |.
▶ Distance at step t of MC: dt = d(Xt ,Yt)

▶ Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ maxx,y Pr(dT ≥ 1) ≤ maxx,y E [dT ]

▶ Our goal is to bound maxx,y E[dT ] ≤ ϵ.
▶ After some work... (see next slides)

E[dt+1] =≤ βE[dt ], with β < 1 (Contraction of expect. distance)
▶ Iterate E[dT ] =≤ βT d0 ≤ βT |V |

Therefore the chain is guaranteed to have mixed for all times, such
that βT |V | ≤ ϵ, leading to

τ(ϵ) =
1

log(1/β)
(log |V |+ log(1/ϵ)) .

Many times we can write β = e−α/|V |, leading to
τ(ϵ) = |V |

α
(log |V |+ log(1/ϵ)), where α can itself depend on

parameters of the problem.
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Path Coupling in a nutshell II

▶ We define a distance d(X ,Y ). Neighbors if d(X ,Y ) = 1.
▶ Our goal is to prove concentration of expect. of distance:

E[dt+1] ≤ βE[dt ], with β < 1.
▶ Path: Xt = Z0,Z1, ....,Zdt = Yt where d(Zi+1,Zi) = 1

▶ dt =
∑dt

i=1 d(Zi+1,Zi) (by construction)
▶ Updated path: Xt+1 = Z ′

0,Z
′

1, ....,Z
′

dt
= Yt+1.

▶ dt+1 ≤
∑dt

i=1 d(Z ′
i+1,Z

′
i ) (by triangle inequality)

1. For our problem of interest prove
E[d(Z ′

i+1,Z
′

i )] ≤ βd(Zi+1,Zi) = β.

2. Leads to E[dt+1|dt ] ≤
∑dt

i=1 E[d(Z ′
i+1,Z

′
i )] ≤ βdt .

3. Then E[dt+1] ≤ E[E[dt+1|dt ]] ≤ βE[dt ].
Left to do: prove E[d(Z ′

i+1,Z
′

i )] ≤ β for our problem of interest.
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Glauber dynamics for independent sets
Consider Glauber dynamics to sample from the Gibbs distribution of
independent sets of a graph G = (V ,E).
▶ Let π(x) the Gibbs distribution on independent sets:

π(x) =

{
λ|x|

Z(λ) if x(v)x(w) = 0 ∀{v ,w } ∈ E
0 Otherwise.

(3)

where |x | =
∑

v∈V x(v) and Z (λ) =
∑

x∈χ λ|x | normalizes π.

Algorithm GLAUBERIS(G = (V ,E))

1. Start with an arbitrary IS X0

2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. Set Xt+1(w) = Xt(w)∀w ̸= v .
5. if ∃w ′ ∈ N(v), s.t. Xt(w ′) = 1 set Xt(v) = 0 (M1)
6. else Xt+1(v) = 1 with probability λ/(1 + λ) (M2)
7. or Xt+1(v) = 0 with probability 1/(1 + λ)
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Proof Strategy

1. Construct a coupling (Xt ,Yt): chose same v for both chains.

2. We define a distance dt = d(Xt ,Yt) = |Yt \ Xt |+ |Xt \ Yt |

3. We will construct a path coupling by having a path
Xt = Z0,Z1, ....,Zdt = Yt where Zi+1 and Zi are neighbors.

4. We will prove E[dt+1|dt = 1] ≤ 1 − c(λ)/n ≤ e−c(λ)/n

5. This will lead to E[dt+1] ≤ e−c(λ)/nE[dt ]

Therefore the chain is guaranteed to have mixed for all times

τ(ϵ) =
n

c(λ)
(log n + log(1/ϵ)) .

where c(λ) = 1 − λ(∆− 1)/(1 + λ), which lead to rapid mixing
sufficient condition λ < (∆− 1)−1.
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Key aspects of the proof

We will now prove E[dt+1|dt = 1] ≤ 1 − c(λ)
n .

▶ Without loss of generality, let Xt = I and Yt = I ∪ {x}

▶ We do not care about how Xt or Yt change but on when they
have different updates that lead to dt+1 ̸= dt .

▶ The discussion needs to consider three scenarios:

1. Case I: when v = x (dt+1dt = dt − 1).
2. Case II: when v /∈ N(x) ∪ {x} (dt+1 = dt + 1).
3. Case III: when v ∈ N(x) (dt+1 = dt + 1).
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Case I: when v = x (dt+1 − dt = 0)

▶ If we select the vertex v where Xt and Yt differ, all neighbors are
the same in both chains, which implies the chain applies same
move to both.

▶ Because either Xt(v) = 1(Yt(v) = 0) or Yt(v) = 1(Xt(v) = 0), all
its neighbors have to be 0.

▶ Therefore the MC will chose move M2.

▶ Whatever is the update, now we have Xt(v) = Yt(v) where
before we had Xt(v) ̸= Yt(v), which means that (.Xt+1,Yt+1) = 0.

Therefore: E[dt+1 − dt |dt = 1] = −1/n
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Case II: when v /∈ N(x) ∪ {x} (dt+1 = dt + 1)

▶ All neighbors of w /∈ N(v) ∪ {v } are equal on both chains

▶ MC implements the same update (M1 or M2 with same output)
on both chains.

▶ Because initially Xt(w) = Yt(w) and also Xt+1(w) = Yt+1(w) we
have dt+1 = dt .

We obtain: E[dt+1 − dt |dt = 1] = 0
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Case III: when v ∈ N(x) (dt+1 = dt + 1)

▶ If v ∈ N(x) and assume without lost of generality that
Xt(x) = 1(Yt(x) = 0).

▶ What may happen is that the MC implements move M1 to Xt and
M2 to Yt potentially leading to Yt+1(v) = 1 ̸= Xt+1(v) and
dt+1 = dt + 1.

▶ This can only happen if all neighbors of v in Yt are 0 and the
move M2 select output 1 for v , which has probability ≤ λ/(1+ λ).

We obtain:

E[dt+1 − dt |dt = 1] ≤ ∆

n

(
λ

1 + λ

)
. (4)

An equivalent argument works for the case Xt(v) = 0(Yt(v) = 1).
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Final step
We will now prove E[dt+1|dt = 1] ≤ 1 − c(λ)

n .

▶ Without loss of generality, let Xt = I and Yt = I ∪ {x}

▶ We do not care about how Xt or Yt change but on when they
have different updates that lead to dt+1 ̸= dt .

▶ The discussion depends on what is the neighborhood of y .
Because ∆ = 4, there exist three cases:

1. Case I: (when v = x) E[dt+1 − dt |dt = 1] = −1/n.
2. Case II (v /∈ N(x) ∪ {x}: E[dt+1 − dt |dt = 1] = 0.
3. Case III (v ∈ N(x)): E[dt+1 − dt |dt = 1] ≤ ∆

n

(
λ

1+λ

)
.

We obtain:

E[dt+1|dt = 1] ≤ 1 −
1
n
+

∆

n

(
λ

1 + λ

)
= 1 −

1
n

(
1 − λ(∆− 1)

1 + λ

)
. (5)

If λ < (∆− 1)−1 we obtain: E[dt+1|dt = 1] ≤ 1 − c(λ)
n ≤ e−c(λ)/n

with c(λ) = 1 − λ(∆− 1)/(1 + λ) ≥ 0.
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Recap of proof strategy of this example

1. We designed a coupling (Xt ,Yt): chose same v for both chains.

2. We defined a distance dt = d(Xt ,Yt) = |Yt \ Xt |+ |Xt \ Yt |

3. We construct a path coupling by having a path
Xt = Z0,Z1, ....,Zdt = Yt where Zi+1 and Zi are neighbors.

4. We proved E[dt+1|dt = 1] ≤ (1 − c(λ)/n ≤ e−c(λ)/n

5. This will lead to E[dt+1] ≤ e−c(λ)/nE[dt ]

Therefore the chain is guaranteed to have mixed for all times

τ(ϵ) =
n

c(λ)
(log n + log(1/ϵ)) .

where c(λ) = 1 − λ(∆− 1)/(1 + λ), which lead to rapid mixing
sufficient condition λ < (∆− 1)−1.
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What if E[d(Z ′
i+1,Z

′
i )] = 1?

Lemma (Bubley and Dyer 1997 (cont’d))
If E[dt+1|dt ] ≤ dt an there is some α > 0 such that
Pr[d(X ′,Y ′) ̸= d(X ,Y )] ≥ α for all (X ,Y ) ∈ Ω×Ω, then

τ(ϵ) ≤
⌈

e|V |2

α

⌉
⌈ln(ϵ−1)⌉.

RA (2023/24) – Lecture 17 – slide 15


