Randomized Algorithms
 Lecture 17: Path Coupling

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2023/24) - Lecture 17 - slide 1

Recap: TV and Coupling

Our goal: We want to sample from a MC with stationary distribution π in time poly (n) and $\log (1 / \epsilon)$.

- TV distance: $\left\|D_{1}-D_{2}\right\|=\frac{1}{2} \sum_{x \in \Omega}\left|D_{1}(x)-D_{2}(x)\right|$
- Lower bound mixing time:
$\left|D_{1}(A)-D_{2}(A)\right| \leq \max _{A \subseteq \Omega}\left|D_{1}(A)-D_{2}(A)\right|=\left\|D_{1}-D_{2}\right\|$
- Upper-bounds on mixing time (Coupling):
$\left\|D_{1}-D_{2}\right\| \leq \inf \operatorname{Pr}(X \neq Y)$ for a coupling (X, Y) of D_{1} and D_{2}.
- We want to prove that $\left\|P^{t}(x, \cdot)-\pi\right\| \leq \epsilon$ fast enough
- Coupling lemma:
$\operatorname{Pr}\left(X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right) \leq \epsilon \quad \Rightarrow \quad \tau(\epsilon) \leq T$

Mixing time

Definition (Definition 12.2)
Let M be a finite, irreducible and aperiodic Markov chain over the state space Ω and let π be its stationary distribution. We define $\Delta_{x}(t), \Delta(t)$ as

$$
\Delta_{x}(t)=\left\|M^{t}[x,]-\pi\right\|, \quad \Delta(t)=\max _{x \in \Omega} \Delta_{x}(t) .
$$

We also define

$$
\tau_{x}(\epsilon)=\min \left\{t: \Delta_{x}(t) \leq \epsilon\right\}, \quad \tau(\epsilon)=\max _{x \in \Omega} \tau_{x}(\epsilon)
$$

1. $\tau(\epsilon)$ is called mixing time.
2. A chain is rapidly mixing if $\tau(\epsilon)$ is polynomial in $\log (1 / \epsilon)$ and the size of the problem.

RA (2023/24) - Lecture 17 - slide 3

Coupling as upper-bound of TV distance

Definition (Definition 12.2)

A coupling of two probability distributions μ and v is a pair of random variables (X, Y) defined on a single probability space, i.e., a joint probability distribution q on $\Omega \times \Omega$ such that

$$
\begin{equation*}
\sum_{y \in \Omega} q(x, y)=\mu(x) \text { and } \sum_{x \in \Omega} q(x, y)=v(x) \tag{1}
\end{equation*}
$$

Definition (Lemma 12.3)

Given distributions $\mu(x)$ and $v(x)$ on state space Ω. All couplings (X, Y) satisfy the condition

$$
\begin{equation*}
\inf \operatorname{Pr}(X \neq Y) \geq\|\mu-v\| \tag{2}
\end{equation*}
$$

- This will allow us to upper-bound distances between two Markov chains at step t, and also with respect to the stationary distribution, which leads to upper-bounds on mixing times.

$$
\text { RA (2023/24) - Lecture } 17 \text { - slide } 4
$$

Path coupling: the big picture (Book section 12.6)

Neighborhood: states $y \in \Omega$ reachable from x in a single step.

- Distance $d(X, Y)$: the amount of steps to reach y from x. Neighbors if $d(X, Y)=1$. Many times $d(X, Y) \leq|V|$.
- Distance at step t of MC: $d_{t}=d\left(X_{t}, Y_{t}\right)$
- $\operatorname{Pr}\left(X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right) \leq \max _{x, y} \operatorname{Pr}\left(d_{T} \geq 1\right) \leq \max _{x, y} E\left[d_{T}\right]$
- Our goal is to bound $\max _{x, y} \mathbf{E}\left[d_{T}\right] \leq \epsilon$.
- After some work... (see next slides) $\mathbf{E}\left[d_{t+1}\right]=\leq \beta \mathbf{E}\left[d_{t}\right]$, with $\beta<1$ (Contraction of expect. distance)
- Iterate $\mathbf{E}\left[d_{T}\right]=\leq \beta^{T} d_{0} \leq \beta^{T}|V|$

Therefore the chain is guaranteed to have mixed for all times, such that $\beta^{T}|V| \leq \epsilon$, leading to

$$
\tau(\epsilon)=\frac{1}{\log (1 / \beta)}(\log |V|+\log (1 / \epsilon)) .
$$

Many times we can write $\beta=e^{-\alpha /|V|}$, leading to $\tau(\epsilon)=\frac{|V|}{\alpha}(\log |V|+\log (1 / \epsilon))$, where α can itself depend on parameters of the problem.

RA (2023/24) - Lecture 17 - slide 5

Path Coupling in a nutshell II

- We define a distance $d(X, Y)$. Neighbors if $d(X, Y)=1$.
- Our goal is to prove concentration of expect. of distance: $\mathbf{E}\left[d_{t+1}\right] \leq \beta \mathbf{E}\left[d_{t}\right]$, with $\beta<1$.
- Path: $X_{t}=Z_{0}, Z_{1}, \ldots, Z_{d_{t}}=Y_{t}$ where $d\left(Z_{i+1}, Z_{i}\right)=1$
- $d_{t}=\sum_{i=1}^{d_{t}} d\left(Z_{i+1}, Z_{i}\right)$ (by construction)
- Updated path: $X_{t+1}=Z_{0}^{\prime}, Z_{1}^{\prime}, \ldots, Z_{d_{t}}^{\prime}=Y_{t+1}$.
- $d_{t+1} \leq \sum_{i=1}^{d_{t}} d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)$ (by triangle inequality)

1. For our problem of interest prove $\mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta d\left(Z_{i+1}, Z_{i}\right)=\beta$.
2. Leads to $\mathbf{E}\left[d_{t+1} \mid d_{t}\right] \leq \sum_{i=1}^{d_{t}} \mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta d_{t}$.
3. Then $\mathbf{E}\left[d_{t+1}\right] \leq \mathbf{E}\left[\mathbf{E}\left[d_{t+1} \mid d_{t}\right] \leq \beta \mathbf{E}\left[d_{t}\right]\right.$.

Left to do: prove $\mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta$ for our problem of interest.

RA (2023/24) - Lecture 17 - slide 6

Glauber dynamics for independent sets

Consider Glauber dynamics to sample from the Gibbs distribution of independent sets of a graph $G=(V, E)$.

- Let $\pi(x)$ the Gibbs distribution on independent sets:

$$
\pi(x)= \begin{cases}\frac{\lambda^{|x|}}{Z(\lambda)} & \text { if } x(v) x(w)=0 \tag{3}\\ 0 & \text { Otherwise. }\end{cases}
$$

where $|x|=\sum_{v \in V} X(v)$ and $Z(\lambda)=\sum_{x \in X} \lambda^{|x|}$ normalizes π.
Algorithm Glauberis $(G=(V, E))$

1. Start with an arbitrary IS X_{0}
2. for $i \leftarrow 0$ to "whenever"
3. \quad Choose v uniformly at random from V.
4. \quad Set $X_{t+1}(w)=X_{t}(w) \forall w \neq v$.
5. if $\exists w^{\prime} \in N(v)$, s.t. $X_{t}\left(w^{\prime}\right)=1$ set $X_{t}(v)=0(\mathrm{M} 1)$
6. else $X_{t+1}(v)=1$ with probability $\lambda /(1+\lambda)(\mathrm{M} 2)$
7. or $X_{t+1}(v)=0$ with probability $1 /(1+\lambda)$

RA (2023/24) - Lecture 17 - slide 7

Proof Strategy

1. Construct a coupling $\left(X_{t}, Y_{t}\right)$: chose same v for both chains.
2. We define a distance $d_{t}=d\left(X_{t}, Y_{t}\right)=\left|Y_{t} \backslash X_{t}\right|+\left|X_{t} \backslash Y_{t}\right|$
3. We will construct a path coupling by having a path $X_{t}=Z_{0}, Z_{1}, \ldots, Z_{d_{t}}=Y_{t}$ where Z_{i+1} and Z_{i} are neighbors.
4. We will prove $\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq 1-c(\lambda) / n \leq e^{-c(\lambda) / n}$
5. This will lead to $\mathbf{E}\left[d_{t+1}\right] \leq e^{-c(\lambda) / n} \mathbf{E}\left[d_{t}\right]$

Therefore the chain is guaranteed to have mixed for all times

$$
\tau(\epsilon)=\frac{n}{c(\lambda)}(\log n+\log (1 / \epsilon)) .
$$

where $c(\lambda)=1-\lambda(\Delta-1) /(1+\lambda)$, which lead to rapid mixing sufficient condition $\lambda<(\Delta-1)^{-1}$.

RA (2023/24) - Lecture 17 - slide 8

Key aspects of the proof

We will now prove $\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq 1-\frac{c(\lambda)}{n}$.

- Without loss of generality, let $X_{t}=I$ and $Y_{t}=I \cup\{x\}$
- We do not care about how X_{t} or Y_{t} change but on when they have different updates that lead to $d_{t+1} \neq d_{t}$.
- The discussion needs to consider three scenarios:

1. Case I: when $v=x\left(d_{t+1} d_{t}=d_{t}-1\right)$.
2. Case II: when $v \notin N(x) \cup\{x\}\left(d_{t+1}=d_{t}+1\right)$.
3. Case III: when $v \in N(x)\left(d_{t+1}=d_{t}+1\right)$.

Case I: when $v=x\left(d_{t+1}-d_{t}=0\right)$

- If we select the vertex v where X_{t} and Y_{t} differ, all neighbors are the same in both chains, which implies the chain applies same move to both.
- Because either $X_{t}(v)=1\left(Y_{t}(v)=0\right)$ or $Y_{t}(v)=1\left(X_{t}(v)=0\right)$, all its neighbors have to be 0 .
- Therefore the MC will chose move M2.
- Whatever is the update, now we have $X_{t}(v)=Y_{t}(v)$ where before we had $X_{t}(v) \neq Y_{t}(v)$, which means that $\left(X_{t+1}, Y_{t+1}\right)=0$.

Therefore: $\mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right]=-1 / n$

$$
\text { RA (2023/24) - Lecture } 17 \text { - slide } 10
$$

Case II: when $v \notin N(x) \cup\{x\}\left(d_{t+1}=d_{t}+1\right)$

- All neighbors of $w \notin N(v) \cup\{v\}$ are equal on both chains
- MC implements the same update (M1 or M2 with same output) on both chains.
- Because initially $X_{t}(w)=Y_{t}(w)$ and also $X_{t+1}(w)=Y_{t+1}(w)$ we have $d_{t+1}=d_{t}$.

We obtain: $\mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right]=0$

Case III: when $v \in N(x)\left(d_{t+1}=d_{t}+1\right)$

- If $v \in N(x)$ and assume without lost of generality that $X_{t}(x)=1\left(Y_{t}(x)=0\right)$.
- What may happen is that the MC implements move M1 to X_{t} and M 2 to Y_{t} potentially leading to $Y_{t+1}(v)=1 \neq X_{t+1}(v)$ and $d_{t+1}=d_{t}+1$.
- This can only happen if all neighbors of v in Y_{t} are 0 and the move M2 select output 1 for v, which has probability $\leq \lambda /(1+\lambda)$.
We obtain:

$$
\begin{equation*}
\mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right] \leq \frac{\Delta}{n}\left(\frac{\lambda}{1+\lambda}\right) \tag{4}
\end{equation*}
$$

An equivalent argument works for the case $X_{t}(v)=0\left(Y_{t}(v)=1\right)$.

$$
\text { RA (2023/24) - Lecture } 17 \text { - slide } 12
$$

Final step

We will now prove $\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq 1-\frac{c(\lambda)}{n}$.

- Without loss of generality, let $X_{t}=I$ and $Y_{t}=I \cup\{x\}$
- We do not care about how X_{t} or Y_{t} change but on when they have different updates that lead to $d_{t+1} \neq d_{t}$.
- The discussion depends on what is the neighborhood of y. Because $\Delta=4$, there exist three cases:

1. Case I: $($ when $v=x) \mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right]=-1 / n$.
2. Case II $\left(v \notin N(x) \cup\{x\}: \mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right]=0\right.$.
3. Case III $(v \in N(x)): \mathbf{E}\left[d_{t+1}-d_{t} \mid d_{t}=1\right] \leq \frac{\Delta}{n}\left(\frac{\lambda}{1+\lambda}\right)$.

We obtain:

$$
\begin{equation*}
\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq 1-\frac{1}{n}+\frac{\Delta}{n}\left(\frac{\lambda}{1+\lambda}\right)=1-\frac{1}{n}\left(\frac{1-\lambda(\Delta-1)}{1+\lambda}\right) . \tag{5}
\end{equation*}
$$

If $\lambda<(\Delta-1)^{-1}$ we obtain: $\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq 1-\frac{c(\lambda)}{n} \leq e^{-c(\lambda) / n}$ with $c(\lambda)=1-\lambda(\Delta-1) /(1+\lambda) \geq 0$.

$$
\text { RA (2023/24) - Lecture } 17 \text { - slide } 13
$$

Recap of proof strategy of this example

1. We designed a coupling $\left(X_{t}, Y_{t}\right)$: chose same v for both chains.
2. We defined a distance $d_{t}=d\left(X_{t}, Y_{t}\right)=\left|Y_{t} \backslash X_{t}\right|+\left|X_{t} \backslash Y_{t}\right|$
3. We construct a path coupling by having a path $X_{t}=Z_{0}, Z_{1}, \ldots ., Z_{d_{t}}=Y_{t}$ where Z_{i+1} and Z_{i} are neighbors.
4. We proved $\mathbf{E}\left[d_{t+1} \mid d_{t}=1\right] \leq\left(1-c(\lambda) / n \leq e^{-c(\lambda) / n}\right.$
5. This will lead to $\mathbf{E}\left[d_{t+1}\right] \leq e^{-c(\lambda) / n} \mathbf{E}\left[d_{t}\right]$

Therefore the chain is guaranteed to have mixed for all times

$$
\tau(\epsilon)=\frac{n}{c(\lambda)}(\log n+\log (1 / \epsilon)) .
$$

where $c(\lambda)=1-\lambda(\Delta-1) /(1+\lambda)$, which lead to rapid mixing sufficient condition $\lambda<(\Delta-1)^{-1}$.

What if $\mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right]=1$?

Lemma (Bubley and Dyer 1997 (cont’d))
If $\mathbf{E}\left[d_{t+1} \mid d_{t}\right] \leq d_{t}$ an there is some $\alpha>0$ such that
$\operatorname{Pr}\left[d\left(X^{\prime}, Y^{\prime}\right) \neq d(X, Y)\right] \geq \alpha$ for all $(X, Y) \in \Omega \times \Omega$, then

$$
\tau(\epsilon) \leq\left\lceil\frac{e|V|^{2}}{\alpha}\right\rceil\left\lceil\ln \left(\epsilon^{-1}\right)\right\rceil .
$$

