Randomized Algorithms
Lecture 17: Path Coupling

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2023/24) — Lecture 17 — slide 1



Recap: TV and Coupling

Our goal: We want to sample from a MC with stationary distribution 7t
in time poly(n) and log(1/¢€).

> TVdistance: |[Dy — Daf| = 33,0 ID1(x) — Da(x)]

» Lower bound mixing time:
|D1(A) — D2(A)| < maxaco |Di(A) — Da2(A)|l = [|Dy — Dal|

» Upper-bounds on mixing time (Coupling):
IIDy — Do|| < infPr(X # Y) for a coupling (X, Y) of Dy and Ds..

» We want to prove that ||P!(x,-) — n|| < e fast enough

» Coupling lemma:
PriXr £#Yr1Xo=x,Yo=y)<e = 1(e)<T
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Mixing time

Definition (Definition 12.2)
Let M be a finite, irreducible and aperiodic Markov chain over the
state space Q and let 7t be its stationary distribution. We define

Ax(t),A(t) as

We also define
Tx(€) = min{t: Ax(t) < €}, T(e) = maxTy(e).
xeQ

1. t(e) is called mixing time.

2. A chain is rapidly mixing if t(e) is polynomial in log(1/¢) and the
size of the problem.
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Coupling as upper-bound of TV distance

Definition (Definition 12.2)

A coupling of two probability distributions p and v is a pair of random
variables (X, Y) defined on a single probability space, i.e., a joint
probability distribution g on Q x Q such that

> qlx,y)=ux)and Y q(x,y) =v(x) (1)

yeQ xXeQ

Definition (Lemma 12.3)
Given distributions p(x) and v(x) on state space Q. All couplings
(X, Y) satisfy the condition

infPr(X £ Y) > u—l. (2)

» This will allow us to upper-bound distances between two Markov
chains at step t, and also with respect to the stationary
distribution, which leads to upper-bounds on mixing times.
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Path coupling: the big picture (Book section 12.6)
Neighborhood: states y € Q reachable from x in a single step.

» Distance d(X, Y): the amount of steps to reach y from x.
Neighbors if d(X, Y) = 1. Many times d(X, Y) < |V|.
» Distance at step t of MC: d; = d( X}, Y?)
> Pr(Xr # Y7|Xo = X, Yo = y) < maxy,, Pr(dr > 1) < max, , Eldr]
» Our goal is to bound maxy,, E[d7] < e.

» After some work... (see next slides)
Eld; 1] =< BE[d}], with < 1 (Contraction of expect. distance)
> lterate E[d7] =< BTdy < B7|V|

Therefore the chain is guaranteed to have mixed for all times, such
that B7|V| < e, leading to

1
T(e) = ——— (log|V| + log(1/€)).
(€) log(1/[3)( g |V]+log(1/€))
Many times we can write p = e~ */!"!, leading to
() = Y (log |V| + log(1/€)), where « can itself depend on
parameters of the problem.
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Path Coupling in a nutshell Il

» We define a distance d(X, Y). Neighbors if d(X, Y) = 1.
» Our goal is to prove concentration of expect. of distance:
Eldi 1] < BE[di], with § < 1.
» Path: X; = 2y, 24, ....,Z4, = Yt where d(Z;;4,2Z;) =1
> d; = Z, 1 d(Zi+1, Z) (by construction)
» Updated path: Xt+1 =25, Z{ ey Zg, = Vi1
> dip1 < Z, 1d(Z/ 1,Z/) (by triangle inequality)
1. For our problem of interest prove
Eld(Z/4,Z/)] < Bd( ,+1,Z) =B.
2. Leads to E[d;, 1]di] < Z [d(Z/ 4,Z)] < Ba.
3. Then E[d;, 1] <E[E dmldt < BEI[d}].

Left to do: prove E[d(Z/ 4, Z/)] < B for our problem of interest.
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Glauber dynamics for independent sets

Consider Glauber dynamics to sample from the Gibbs distribution of
independent sets of a graph G = (V, E).

» Let t(x) the Gibbs distribution on independent sets:

n(x):{z}\(;) if x(V)x(w)=0 Yv,w}eE

. (3)
0 Otherwise.

where |x| = 3., x(v) and Z(A) = 3, . A normalizes 7.

Algorithm GLAUBERIS(G = (V, E))

1. Start with an arbitrary 1S X

2. for i« 0 to “whenever"

3. Choose v uniformly at random from V.

Set X;,1(w) = Xy (w)Vw # v.

if 3w’ € N(v), s.t. X;y(w’) =1 set X;(v) =0 (M1)

else X;;1(v) = 1 with probability A/(1 + A) (M2)
or X;.1(v) = 0 with probability 1/(1 + A)
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Proof Strategy

1. Construct a coupling (X;, Y;): chose same v for both chains.
2. We define a distance d; = d(X;, Yi) = |Y: \ Xil + [ X¢ \ Ys

3. We will construct a path coupling by having a path
Xt =2y, 24, ...., Zo, = Y: Where Z.1 and Z; are neighbors.

4. We will prove E[di4|d; =1] <1 —c(A)/n < e cA)/n
5. This will lead to E[d}1] < e ¢/ E[d}]
Therefore the chain is guaranteed to have mixed for all times

(e) = ﬁ (log n + log(1/€)) .

where ¢(A) =1 —A(A—1)/(1 4+ A), which lead to rapid mixing
sufficient condition A < (A — 1)1,
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Key aspects of the proof

We will now prove E[d; 4]d; =1] <1 — L,:\)

» Without loss of generality, let X; = /and Y; = U {x}

» We do not care about how X; or Y; change but on when they
have different updates that lead to d;. 1 # a;.

» The discussion needs to consider three scenarios:

1. Case l: whenv =x (di.10; = d; — 1).
2. Case ll: when v ¢ N(x) U{x} (di1 = d; + 1).
3. Case lll: when v € N(x) (di1 = di +1).
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Case |: when v = x (di1 — dy = 0)

> If we select the vertex v where X; and Y; differ, all neighbors are
the same in both chains, which implies the chain applies same
move to both.

» Because either X;(v) = 1(Y;(v) =0) or Yi(v) = 1(X;(v) = 0), all
its neighbors have to be 0.

» Therefore the MC will chose move M2.

» Whatever is the update, now we have X;(v) = Y;(v) where
before we had X;(v) # Y;(v), which means that (Xm, Yirq1) =0.

Therefore: E[dy, 1 — dildy =11 = —1/n
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Case Il: when v ¢ N(x) U{x} (di1 = di + 1)

» All neighbors of w ¢ N(v) U{v} are equal on both chains

» MC implements the same update (M1 or M2 with same output)
on both chains.

» Because initially X;(w) = Y;(w) and also X; (W) = Yiq (W) we
have d{+1 = 0.

We obtain: E[dt+1 - dt|dt =1]=0
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Case lll: when v € N(x) (dy.1 =di + 1)

» If v € N(x) and assume without lost of generality that
Xi(x) =1(Yi(x) =0).

» What may happen is that the MC implements move M1 to X; and
M2 to Y; potentially leading to Y;.1(v) =1 # X;,1(v) and
Qi1 =dy+ 1.

» This can only happen if all neighbors of v in Y; are 0 and the
move M2 select output 1 for v, which has probability < A/(1+A).

We obtain:

A A

An equivalent argument works for the case X;(v) = 0(Y:(v) =1).
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Final step

c(A)
.

We will now prove E[d;,q]d; =1] <1 —

» Without loss of generality, let X; = /and Y; = U {x}

» We do not care about how X; or Y; change but on when they
have different updates that lead to d; 1 # d;.

» The discussion depends on what is the neighborhood of y.
Because A = 4, there exist three cases:

1. Case |: (when v = x) E[d;1 — dildi = 1] =—1/n.
2. Case ll (v ¢ N(x) U{x}: Eld;.1 — dildr = 1] = 0.
3. Case lll (v € N(x)): Eldy1 — dildy =11 < 2 (%) -
We obtain:
_ T A A N _1/1=Ma-1)
IfA < (A—1)"" we obtain: E[d;4]dy = 1] < 1 — 22X < g=e/n

with c(A) =1 —-A(A—1)/(1+A) >0.
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Recap of proof strategy of this example

1. We designed a coupling (X, Y;): chose same v for both chains.
2. We defined a distance d; = d(X;, Y:) = |Y: \ X3l + | X: \ Y4l

3. We construct a path coupling by having a path
Xt = 20,24, ..., 24, = Yt Where Z; 1 and Z; are neighbors.

4. We proved E[d;,1|d; =1] < (1 —c(A)/n < e cA)/n
5. This will lead to E[d}1] < e ¢/ E[d}]
Therefore the chain is guaranteed to have mixed for all times

(e) = ﬁ (log n+ log(1/€)) .

where ¢(A) =1 —A(A—1)/(1 4+ A), which lead to rapid mixing
sufficient condition A < (A — 1)1,
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What if E[d( Z)] =17

/+1>

Lemma (Bubley and Dyer 1997 (cont'd))

IfE[d;,+1|d}] < d; an there is some « > 0 such that
Prid( X', Y')£Ad(X,Y)] >« forall (X,Y) e Qx Q, then

wor< [25] e,
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