Randomized Algorithms Lecture 18: Ising Model

Raul Garcia-Patron

School of Informatics University of Edinburgh

Ising Model

A **spin system** is a probability $p(\sigma)$ of configurations $\sigma \in \{+1, -1\}^V$, defined in a graph G = (V, E).

- Interpretation as magnets: $\{+1, -1\}$ being the orientation.
- The nearest-neighbor Ising model is the most studied spin system. The energy of a configuration σ is defined to be:

$$H(\sigma) = \sum_{v,w \in V: (v,w) \in E} z_{v,w} \sigma(v) \sigma(w) + \sum_{z \in V} h_z \sigma(z)$$
(1)

- Minimization of the energy maps to NP-hard problems:
 - Ferromagnetic
 - Anti-ferromagnetic (MAX-CUT)
 - Independent sets

RA (2023/24) – Lecture 18 – slide 2

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ferromagnetic Ising Model

Ferromagnetic $z_{v,w} < 0$

$$H(\sigma) = -\sum_{v,w \in V: (v,w) \in E} |z_{v,w}| \sigma(v) \sigma(w) + \sum_{z \in V} h_z \sigma(z)$$
(2)

Anti-Ferromagnetic Ising Model

• Anti-ferromagnetic $z_{v,w} > 0$

$$H(\sigma) = \sum_{\mathbf{v}, \mathbf{w} \in \mathbf{V}: (\mathbf{v}, \mathbf{w}) \in \mathbf{E}} z_{\mathbf{v}, \mathbf{w}} \sigma(\mathbf{v}) \sigma(\mathbf{w}) + \sum_{z \in \mathbf{V}} h_{\sigma}(z)$$
(3)

•
$$z_{\nu,w} = 1, h = 0$$
: equivalent to MAX-CUT
 $H(\sigma) = \sum_{\nu,w \in V: (\nu,w) \in E} \sigma(\nu) \sigma(w)$

•
$$H(\sigma) = |\text{No Cut}| - |\text{Cut}|$$

- ▶ |No Cut| + |Cut| = |E|
- $\blacktriangleright H(\sigma) = |E| 2|Cut|$
- Minimizing H(σ) equivalent of maximizing cut

RA (2023/24) – Lecture 18 – slide 4

Ising Model and independent sets

Mapping IS to Ising model:

$$H(\sigma) = \sum_{\mathbf{v}, \mathbf{w} \in \mathbf{V}: (\mathbf{v}, \mathbf{w}) \in \mathbf{E}} (1 - \sigma(\mathbf{u}))(1 - \sigma(\mathbf{v}))$$
(4)

- The state of minimum energy (groundstate in physics) encodes the solution of maximum independent set.
- The Gibbs distribution can contain configurations that are not IS !!

Gibbs distribution of Ising Model

• The energy of a configuration σ is defined to be:

$$H(\sigma) = \sum_{\mathbf{v}, \mathbf{w} \in V: (\mathbf{v}, \mathbf{w}) \in E} z_{\mathbf{v}, \mathbf{w}} \sigma(\mathbf{v}) \sigma(\mathbf{w}) + \sum_{z \in V} h_z \sigma(z)$$
(5)

Its Gibbs distribution that we will sample from:

$$\mu(\sigma) = \frac{1}{Z(\beta)} e^{-\beta H(\sigma)}$$

- It is the state of equilibrium of the system at temperature 1/β
- Where $Z(\beta)$ is the **partition function** (normalization factor).

$$Z(\beta) = \sum_{\sigma \in \Omega} e^{-\beta H(\sigma)}$$

- Variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives.
- Hard to compute exactly, sometime easy to approximate with relative error.

Applications

- Physics: Physicist are often interested in graphs that are a lattice of a given dimension.
- Theoretical Computer Science: complexity phase-transition, from easy to hard problems.
 - Computational phase-transition connected to the physical phase-transition
- Machine Learning:

Boltzman machines, Energy based models,...

- 1. We have data that we assume comes from distribution $p(\sigma)$
- 2. We learn the parameters from the data (can be hard)
- 3. We generate samples form $p(\sigma)$ (can also be hard)

RA (2023/24) – Lecture 18 – slide 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simulated annealing

It is a randomized algorithm for approximating the global optimum in a large search space for an optimization problem characterized by a cost function $H(\sigma)$.

The name of the algorithm comes from annealing in metallurgy. Key idea:

- 1. Design a proper annealing (cooling) schedule (increasing β).
- Use a sampling algorithm via Metropolis to generate samples of its Gibbs distribution, *min*{1, e^{-β(H(y)-H(x))}}.

All the art is on designing a good β schedule and how you generate samples quickly. If your Markov chain does not mix quickly you will be stuck in a local minima as you will reject all transitions. You can not circunvent NP-hardness.

Approximating partition function

We can compute the partition function

$$Z(\beta) = \sum_{\sigma \in \Omega} e^{-\beta H(\sigma)}$$

using a *telescoping product* and constructing a cooling schedule of *m* steps increasing β_i , where $\beta_0 = 0$ and $\beta_m = \beta$:

$$|Z(\beta)| = \frac{|Z(\beta_m)|}{|Z(\beta_{m-1})|} \times \frac{|Z(\beta_{m-1})|}{|Z(\beta_{m-2})|} \times \frac{|Z(\beta_{m-2})|}{|Z(\beta_{m-3})|} \times \ldots \times \frac{|Z(\beta_1)|}{|Z(0)|} \times |Z(0)|.$$

▶ $|Z(0)| = 2^n$ as it is the sum of all configuration.

- We obtain close approximate values \tilde{r}_i for each ratio $r_i = \frac{|Z(\beta_i)|}{|Z(\beta_{i-1})|}$, for i = 1, ..., m.
- Our *estimate* for the partition function $Z(\beta)$ will be:

$$2^n\prod_{i=1}^m \tilde{r}_i.$$

RA (2023/24) – Lecture 18 – slide 9

(日)

Gibbs Sampling for the Ferromagnetic Ising model

Probability $p(\sigma)$ of configurations $\sigma \in \{+1, -1\}^V$, defined in a graph G = (V, E).

The energy of a configuration σ is defined to be:

$$H(\sigma) = -\sum_{\boldsymbol{v}, \boldsymbol{w} \in \boldsymbol{V}: (\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{E}} \sigma(\boldsymbol{v}) \sigma(\boldsymbol{w})$$
(6)

- Minimization if all +1/-1. Easy solution.
- We are interested in sampling from the Gibbs distribution

$$\mu(\sigma) = \frac{1}{Z(\beta)} e^{-\beta H(\sigma)}$$

This could have many application, among others approximating the partition function

$$Z(\sigma) = \sum_{\sigma \in \Omega} e^{-\beta H(\sigma)}$$

Glauber Dynamics recap

- Let V and S be finite sets and suppose Ω ⊆ {+1, −1}^V. Ex: V vertices of a graph with a spin on each.
- Let π be a probability distribution whose support is Ω .
- ▶ The Glauber chain moves from state *x* as follows:
 - 1. An element v is chosen uniformly at random from V.
 - 2. A new state y is chosen s.t.: $y(w) = x(w) \forall w \neq v$.

Definition

Given $x \in \Omega$, $v \in V$: $\Omega(x, v) = \{y \in \Omega : y(w) = x(w) \forall w \neq v\}$. The chain transition reads:

$$P_{x,y} = \pi(y|\Omega(x,v)) = \begin{cases} \frac{\pi(y)}{\pi(\Omega(x,v))} & \text{if } y \in \Omega(x,v) \\ 0 & \text{if } y \notin \Omega(x,v) \end{cases}$$
(7)

Glauber for Ferromagnetic Ising

Consider Glauber dynamics to sample from the Gibbs distribution of the Ferromagnetic Ising model of a graph G = (V, E).

► Let $\pi(x)$ the Gibbs distribution $\mu(\sigma) = \frac{1}{Z(\beta)}e^{-\beta H(\sigma)}$ where $H(\sigma) = -\sum_{v,w \in V: (v,w) \in E} \sigma(v)\sigma(w)$ and $Z(\sigma) = \sum_{\sigma \in \Omega} e^{-\beta H(\sigma)}$.

Algorithm GLAUBERFERRO(G = (V, E))

- 1. Start from a random σ .
- 2. for $i \leftarrow 0$ to "whenever"
- 3. Choose *v* uniformly at random from *V*.

4. Set
$$\sigma_{t+1}(x) = \sigma_t(x) \forall x \neq v$$
.

- 5. $\sigma_{t+1}(v) = +1$ with probability $(1 + \tanh(\beta)S(\sigma, v))/2$
- 6. $\sigma_{t+1}(v) = -1$ with probability $(1 \tanh(\beta)S(\sigma, v))/2$

where $S(\sigma, v) = \sum_{u:u \sim v} \sigma(u)$ that depends only on the vertices adjacent to *w*.

Glauber for Ferromagnetic Ising - Transition rule

Following the Glauber update rules there is only two possibilities, either σ_{t+1}(ν) = +1 or σ_{t+1}(ν) = −1, let's call their corresponding configurations σ⁺¹_{t+1} and σ⁻¹_{t+1} respectively.

The Glauber transition probability should read:

$$P_{\sigma_{t},\sigma_{t+1}^{\pm 1}} = \frac{\mu(\sigma_{t+1}^{\pm 1})}{\mu(\sigma_{t+1}^{\pm 1}) + \mu(\sigma_{t+1}^{-1})} \text{ with } \mu(\sigma) = \frac{1}{Z(\beta)} e^{-\beta H(\sigma)}.$$
 (8)

• Because both $\sigma_{t+1}^{\pm 1}$ only differ on vertex *v* we can write:

$$H(\sigma_{t+1}) = H_{V \setminus v} - \sigma_{t+1}(v) \sum_{x \in V: x \sim v} \sigma_t(u) = H_{V \setminus v} - \sigma_{t+1}(v) S(\sigma_{t+1}, v).$$
(9)

where $H_{V \setminus v}$ is the energy independent of vertex *v*.

$$P_{\sigma_{t},\sigma_{t+1}^{\pm 1}} = \frac{e^{-\beta H_{V\setminus v}} e^{\beta \sigma(v)S(\sigma,v)}}{e^{-\beta H_{V\setminus v}} e^{\beta S(\sigma,v)} + e^{-\beta H_{V\setminus v}} e^{-\beta S(\sigma,v)}}$$

=
$$\frac{e^{\beta \sigma(v)S(\sigma,v)}}{e^{\beta S(\sigma,v)} + e^{-\beta S(\sigma,v)}} = (1 + \sigma(v) \tanh(\beta S(\sigma,v))/2.$$

$$= \frac{e^{\beta \sigma(v)S(\sigma,v)}}{BA(2023/24) - Lecture 18 - slide 13}$$

Path Coupling in a nutshell

- We define a distance d(X, Y). Neighbors if d(X, Y) = 1.
- Our goal is to prove concentration of expect. of distance: $\mathbf{E}[d_{t+1}] = \leq \beta \mathbf{E}[d_t]$, with $\beta < 1$.

▶ Path:
$$X_t = Z_0, Z_1, ..., Z_{d_t} = Y_t$$
 where $d(Z_{i+1}, Z_i) = 1$

• $d_t = \sum_{i=1}^{d_t} d(Z_{i+1}, Z_i)$ (by construction)

• Updated path: $X_{t+1} = Z'_0, Z'_1, ..., Z'_{d_t} = Y_{t+1}$.

• $d_{t+1} \leq \sum_{i=1}^{d_t} d(Z'_{i+1}, Z'_i)$ (by triangle inequality)

- 1. Prove $\mathbf{E}[d(Z'_{i+1}, Z'_i)] \leq \beta d(Z_{i+1}, Z_i) = \beta$.
- 2. Leads to $\mathbf{E}[d_{t+1}|d_t] \leq \sum_{i=1}^{d_t} \mathbf{E}[d(Z'_{i+1}, Z'_i)] \leq \beta d_t.$
- 3. Then $\mathbf{E}[d_{t+1}] = \mathbf{E}[\mathbf{E}[d_{t+1}|d_t]] = \leq \beta \mathbf{E}[d_t].$

Left to do: prove $\mathbb{E}[d(Z'_{i+1}, Z'_i)] \leq \beta$ for our problem of interest.

Path Coupling in a nutshell - Analysis

We will now prove $\mathbf{E}[d_{t+1}|d_t = 1] \leq 1 - \frac{c(\beta, \Delta)}{n}$.

- We define the distance $\rho(\sigma, \tau) = \frac{1}{2} \sum_{u \in V} |\sigma(u) \tau(u)|$
- We have $\sigma_t(x) = \tau_t(x) \quad \forall u \neq x \text{ as } \rho(\sigma, \tau) = 1.$
- We do not care about how X_t or Y_t change but on when they have different updates that lead to d_{t+1} ≠ d_t.
- The discussion depends on v (Glauber update spin) vs x (spin of difference) and its neighbors:
 - 1. Case I: (when v = x) $\mathbb{E}[d_{t+1} d_t | d_t = 1] = -1/n$.
 - 2. Case II ($v \notin N(x) \cup \{x\}$: $\mathbf{E}[d_{t+1} d_t|d_t = 1] = 0$.
 - 3. Case III $(v \in N(x))$: $\mathbf{E}[d_{t+1} d_t|d_t = 1] \leq \frac{\Delta}{n} \tanh \beta$.

We obtain:

$$\mathbf{E}[d_{t+1}|d_t=1] \le 1 - \frac{1}{n} + \frac{\Delta}{n} \tanh\beta = 1 - \frac{1 - \Delta \tanh(\beta)}{n}$$
(10)

If $\Delta \tanh \beta < 1$ we obtain: $\mathbf{E}[d_{t+1}|d_t = 1] \le 1 - \frac{c(\beta, \Delta)}{n} \le e^{-c(\beta, \Delta)/n}$ with $c(\beta, \Delta) = 1 - \Delta \tanh \beta > 0$. Finally: $\tau(\epsilon) = \frac{n}{c(\beta)} (\log n + \log(1/\epsilon))$. RA (2023/24) - Lecture 18 - slide 15