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Ising Model

A spin system is a probability p(σ) of configurations σ ∈ {+1,−1}V ,
defined in a graph G = (V ,E).

▶ Interpretation as magnets: {+1,−1} being the orientation.

▶ The nearest-neighbor Ising model is the most studied spin
system. The energy of a configuration σ is defined to be:

H(σ) =
∑

v,w∈V :(v,w)∈E

zv,wσ(v)σ(w) +
∑
z∈V

hzσ(z) (1)

▶ Minimization of the energy maps to NP-hard problems:

▶ Ferromagnetic
▶ Anti-ferromagnetic (MAX-CUT)
▶ Independent sets
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Ferromagnetic Ising Model

▶ Ferromagnetic zv,w < 0

H(σ) = −
∑

v,w∈V :(v,w)∈E

|zv,w |σ(v)σ(w) +
∑
z∈V

hzσ(z) (2)

▶ zv,w = −1,hz = 0: solution all +1/-1.
▶ zv,w = −1,hz = h: either all +1 or -1 depending on sign(h).
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Anti-Ferromagnetic Ising Model

▶ Anti-ferromagnetic zv,w > 0

H(σ) =
∑

v,w∈V :(v,w)∈E

zv,wσ(v)σ(w) +
∑
z∈V

hσ(z) (3)

▶ zv,w = 1,h = 0: equivalent to MAX-CUT
H(σ) =

∑
v,w∈V :(v,w)∈E σ(v)σ(w)

▶ H(σ) = |No Cut|− |Cut|
▶ |No Cut|+ |Cut| = |E |
▶ H(σ) = |E |− 2|Cut|
▶ Minimizing H(σ) equivalent of maximizing cut
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Ising Model and independent sets

▶ Mapping IS to Ising model:

H(σ) =
∑

v,w∈V :(v,w)∈E

(1 − σ(u))(1 − σ(v)) (4)

▶ The state of minimum energy (groundstate in physics)
encodes the solution of maximum independent set.

▶ The Gibbs distribution can contain configurations that are
not IS !!
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Gibbs distribution of Ising Model
▶ The energy of a configuration σ is defined to be:

H(σ) =
∑

v,w∈V :(v,w)∈E

zv,wσ(v)σ(w) +
∑
z∈V

hzσ(z) (5)

▶ Its Gibbs distribution that we will sample from:

µ(σ) =
1

Z (β)
e−βH(σ)

▶ It is the state of equilibrium of the system at temperature 1/β
▶ Where Z (β) is the partition function (normalization factor).

Z (β) =
∑
σ∈Ω

e−βH(σ)

▶ Variables of the system, such as the total energy, free
energy, entropy, and pressure, can be expressed in terms
of the partition function or its derivatives.

▶ Hard to compute exactly, sometime easy to approximate
with relative error.
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Applications

▶ Physics: Physicist are often interested in graphs that are a
lattice of a given dimension.

▶ Theoretical Computer Science: complexity
phase-transition, from easy to hard problems.
▶ Computational phase-transition connected to the physical

phase-transition
▶ Machine Learning:

Boltzman machines, Energy based models,...
1. We have data that we assume comes from distribution p(σ)
2. We learn the parameters from the data (can be hard)
3. We generate samples form p(σ) (can also be hard)
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Simulated annealing

It is a randomized algorithm for approximating the global optimum in a
large search space for an optimization problem characterized by a
cost function H(σ).

▶ The name of the algorithm comes from annealing in metallurgy.

Key idea:

1. Design a proper annealing (cooling) schedule (increasing β).

2. Use a sampling algorithm via Metropolis to generate samples of
its Gibbs distribution, min{1,e−β(H(y)−H(x))}.

All the art is on designing a good β schedule and how you generate
samples quickly. If your Markov chain does not mix quickly you will be
stuck in a local minima as you will reject all transitions. You can not
circunvent NP-hardness.
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Approximating partition function
We can compute the partition function

Z (β) =
∑
σ∈Ω

e−βH(σ)

using a telescoping product and constructing a cooling schedule of m
steps increasing βi , where β0 = 0 and βm = β:

|Z (β)| =
|Z (βm)|

|Z (βm−1)|
× |Z (βm−1)|

|Z (βm−2)|
× |Z (βm−2)|

|Z (βm−3)|
× . . .× |Z (β1)|

|Z (0)|
× |Z (0)|.

▶ |Z (0)| = 2n as it is the sum of all configuration.
▶ We obtain close approximate values r̃i for each ratio

ri =
|Z(βi)|

|Z(βi−1)|
, for i = 1, . . . ,m.

▶ Our estimate for the partition function Z (β) will be:

2n
m∏

i=1

r̃i .
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Gibbs Sampling for the Ferromagnetic Ising model
Probability p(σ) of configurations σ ∈ {+1,−1}V , defined in a graph
G = (V ,E).

▶ The energy of a configuration σ is defined to be:

H(σ) = −
∑

v,w∈V :(v,w)∈E

σ(v)σ(w) (6)

▶ Minimization if all +1/-1. Easy solution.

▶ We are interested in sampling from the Gibbs distribution

µ(σ) =
1

Z (β)
e−βH(σ)

▶ This could have many application, among others approximating
the partition function

Z (σ) =
∑
σ∈Ω

e−βH(σ)
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Glauber Dynamics recap

▶ Let V and S be finite sets and suppose Ω ⊆ {+1,−1}V .
Ex: V vertices of a graph with a spin on each.

▶ Let π be a probability distribution whose support is Ω.

▶ The Glauber chain moves from state x as follows:

1. An element v is chosen uniformly at random from V .
2. A new state y is chosen s.t.: y(w) = x(w)∀w ̸= v .

Definition
Given x ∈ Ω, v ∈ V : Ω(x , v) = {y ∈ Ω : y(w) = x(w)∀w ̸= v }. The
chain transition reads:

Px,y = π(y |Ω(x , v)) =

{
π(y)

π(Ω(x,v)) if y ∈ Ω(x , v)
0 if y /∈ Ω(x , v)

(7)

RA (2023/24) – Lecture 18 – slide 11



Glauber for Ferromagnetic Ising

Consider Glauber dynamics to sample from the Gibbs distribution of
the Ferromagnetic Ising model of a graph G = (V ,E).

▶ Let π(x) the Gibbs distribution µ(σ) = 1
Z(β)e−βH(σ) where

H(σ) = −
∑

v,w∈V :(v,w)∈E σ(v)σ(w) and Z (σ) =
∑

σ∈Ω e−βH(σ).

Algorithm GLAUBERFERRO(G = (V ,E))

1. Start from a random σ.
2. for i ← 0 to “whenever"
3. Choose v uniformly at random from V .
4. Set σt+1(x) = σt(x)∀x ̸= v .
5. σt+1(v) = +1 with probability (1 + tanh(β)S(σ, v))/2
6. σt+1(v) = −1 with probability (1 − tanh(β)S(σ, v))/2

where S(σ, v) =
∑

u:u∼v σ(u) that depends only on the vertices
adjacent to w .
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Glauber for Ferromagnetic Ising - Transition rule
▶ Following the Glauber update rules there is only two possibilities,

either σt+1(v) = +1 or σt+1(v) = −1, let’s call their
corresponding configurations σ+1

t+1 and σ−1
t+1 respectively.

▶ The Glauber transition probability should read:

Pσt ,σ
±1
t+1

=
µ(σ±1

t+1)

µ(σ+1
t+1) + µ(σ−1

t+1)
with µ(σ) =

1
Z (β)

e−βH(σ). (8)

▶ Because both σ±1
t+1 only differ on vertex v we can write:

H(σt+1) = HV\v−σt+1(v)
∑

x∈V :x∼v

σt(u) = HV\v−σt+1(v)S(σt+1, v).

(9)
where HV\v is the energy independent of vertex v .

Pσt ,σ
±1
t+1

=
e−βHV\v eβσ(v)S(σ,v)

e−βHV\v eβS(σ,v) + e−βHV\v e−βS(σ,v)

=
eβσ(v)S(σ,v)

eβS(σ,v) + e−βS(σ,v) = (1 + σ(v) tanh(βS(σ, v))/2.
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Path Coupling in a nutshell

▶ We define a distance d(X ,Y ). Neighbors if d(X ,Y ) = 1.
▶ Our goal is to prove concentration of expect. of distance:

E[dt+1] =≤ βE[dt ], with β < 1.
▶ Path: Xt = Z0,Z1, ....,Zdt = Yt where d(Zi+1,Zi) = 1

▶ dt =
∑dt

i=1 d(Zi+1,Zi) (by construction)
▶ Updated path: Xt+1 = Z ′

0,Z
′

1, ....,Z
′

dt
= Yt+1.

▶ dt+1 ≤
∑dt

i=1 d(Z ′
i+1,Z

′
i ) (by triangle inequality)

1. Prove E[d(Z ′
i+1,Z

′
i )] ≤ βd(Zi+1,Zi) = β.

2. Leads to E[dt+1|dt ] ≤
∑dt

i=1 E[d(Z ′
i+1,Z

′
i )] ≤ βdt .

3. Then E[dt+1] = E[E[dt+1|dt ]] =≤ βE[dt ].
Left to do: prove E[d(Z ′

i+1,Z
′

i )] ≤ β for our problem of interest.
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Path Coupling in a nutshell - Analysis
We will now prove E[dt+1|dt = 1] ≤ 1 − c(β,∆)

n .

▶ We define the distance ρ(σ, τ) = 1
2

∑
u∈V |σ(u) − τ(u)|

▶ We have σt(x) = τt(x) ∀u ̸= x as ρ(σ, τ) = 1.
▶ We do not care about how Xt or Yt change but on when they

have different updates that lead to dt+1 ̸= dt .
▶ The discussion depends on v (Glauber update spin) vs x (spin

of difference) and its neighbors:
1. Case I: (when v = x) E[dt+1 − dt |dt = 1] = −1/n.
2. Case II (v /∈ N(x) ∪ {x}: E[dt+1 − dt |dt = 1] = 0.
3. Case III (v ∈ N(x)): E[dt+1 − dt |dt = 1] ≤ ∆

n tanhβ.

We obtain:

E[dt+1|dt = 1] ≤ 1 −
1
n
+

∆

n
tanhβ = 1 −

1 − ∆ tanh(β)
n

(10)

If ∆ tanhβ < 1 we obtain: E[dt+1|dt = 1] ≤ 1 − c(β,∆)
n ≤ e−c(β,∆)/n

with c(β,∆) = 1 − ∆ tanhβ > 0.
Finally: τ(ϵ) = n

c(β) (log n + log(1/ϵ)).
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