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EXAM INFORMATION

v

v

Date: Monday, 11th December 2023. Time: 1:00-3:00 p.m.
Answer two (2) questions, each question has equal weight

This is a NOTES AND CALCULATORS PERMITTED
examination: candidates may consult up to THREE A4
pages (6 sides) of notes. CALCULATORS MAY BE USED
IN THIS EXAMINATION

Read all questions before choosing and be “strategic”
Do good time management!

Past papers: mostly last year. Previous years other
instructors.

Study Tutorials and train with past year exam, check
assignments.
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Lecture 11 - Stochastic processes

» A Stochastic process is a collection of random variables
X ={X;:te T} (usually T =NO),

> X;is the state of the process attime t € T:

Definition (Marov chain)
A discrete-time stochastic process is said to be a Markov chain if

PriX; = at | Xp—1 = @—1,..., Xo = a] = Pr[X; =ar| Xi—1 = ar—1].

» Matrix representation
» Graph representation
» lterations: p; = po - M.

» Stationary distribution: T = 7tP.
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Lecture 11 - Convergence

Theorem (Convergence and detailed balance)

Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution 7t that for each
pair of state i, j satisfies detailed balance (time reversible chains)

7P = 7Py,
then 7t is the unique stationary distribution corresponding to P.

Lemma (Irreducible)

A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.

» Curing periodicity: use of self-loops.
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Lecture 12 - 2-SAT Randomized Algorithm

Algorithm 2SATRANDOM(n; Ci A Ca A ... N\ Cy)

1. Assign arbitrary values to each of the x; variables.

t+—20

while (t < 2mn? and some clause is unsatisfied) do
Choose an arbitrary Cy, from all unsatisfied clauses;

Choose one of the 2 literals in Cy, uniformly at random
and flip the value of its variable;

if (we end with a satisfying assignment) then
return this assignment to the xy,... x, else
return FAILED.

Key idea: instead of quantifying success by number of clauses
satisfied by distance (Hamming wight) to a given solution.

» Analyse its performance by analogy to a Markov chain.
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Lecture 12 - Probability of failure

Theorem

The algorithm 2SATRANDOM perform up to 2mn? iterations of the
while loop. Then, when there is a satisfying assignment for ¢, the
probability that 2SATRANDOM does not discover one, is at most 2=,

Proof.

1. Modify the algorithm to be run m times in parallel over “blocks" of
2n? size.

2. Markov inequality guarantees a failure of 1,2 for 2E[Z,] = 2n?

iterations per block: P(Zy > a) < 5[220]1 choose a = 2E[Z].

3. If one of the m repetition succeeds we find the solution. We get
failure overall only if all the m blocks fail, i.e., Py = (1/2)™ =2—".

]
The algorithm 2SATRANDOM run the 2mn? in a single loop, but this
can only reach the solution faster: instead of imputing m independent
input to each block, we can feed one block with the output of the
previous one.
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Lecture 13 - Monte Carlo Method

Definition (Generalization (Theorem 11.1))

Let Xi,..., Xy be independent and identically distributed indicator
random variables (ie Bernoulli with a fixed parameter), and u = E[X]].

Then if m > 3(%)

= We have

m
Pr<|,1,IZXf—u| > eu) <.
i=1

So for this m, sampling gives a (¢, §)-approximation of .

Definition (FPRAS (Definition 11.2))
A fully polynomial randomized approximation scheme (FPRAS):

» Given input x, we want (e, 6)—approximation of V(x).

» Achieved in time polynomial in 1/¢, in In(1/6) and size of x.
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Lecture 13 - The DNF counting problem

Disjunctive Normal Form (DNF):
» each clause is now a conjunction (/\, AND) literals
» we have disjunctions (\V, OR) of clauses

For example:
(X1 /\)?2 /\Xg) Vv (XQ /\X4) V ()?1 /\X3 /\X4).

We are interested in counting the number of satisfying assignments.
> It is easy to find satisfying assignments or prove not satisfiable.

» It is NP-hard to compute the exact number of satisfying
assignments for a DNF.

» However, we can approximately count them.
» Naive sampling solution over 2" does not work!

» We need to sample from an initial non-trivial distribution
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Lecture 13 - Relations between sets
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> We know how to compute [U] = Y_!_, s"1C

> Sis approx. of same size as U: {5t > 1. Key to make the

sampling algorithm efficient.
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Lecture 14 - Markov chain Monte Carlo (MCMC)

The Markov chain Monte Carlo (MCMC) method provides a very
general approach to sampling from a desired probability distribution.

| 2

The idea is to build a Markov chain M on the state space Q that
we want to sample from.

We ensure the stationary distribution of the Markov chain is
unique and corresponds to the target distribution.

We can then run M to generate a sequence of Xy, X, ..., Xk of
states so Xj distribution is the stationary distribution: xx is our
output sample.

How large k has to be to have a valid sample is called
mixing-time.

Knowing the mixing-time of a Markov chain is non-trivial and will
be the core of the last section of the course.
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Lecture 14 - Approximate counting

Now consider the following telescoping product:

QG QG QG QG
U = 108G 1) 10(Gm2) 0G0 10(Gy) AL

> |Q(Gp)| = 2" as every subset of Vis an |.S. for Gy (Gg has no

edges!).
» We will show how to obtain close approximate values F; for each
ratio r; = sreiie fori=1,...,m.

» Our estimate for the number of 1.S.s will be:

m
on H 7.
i=1
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Lecture 15 - Metropolis Algorithm

We may want to sample from a nonuniform distribution.

For a finite state space QQ and neighborhood structure
{N(X)|x € Q}, let N = maxycq |N(x)|. Let M be any number
such that M > N. For all x € Q, let ty, > 0 be the desired
probability of state x in the stationary distribution. Consider a
Markov chain where

1/Mmin(1,7t,/7y)  if x # y andy € N(x).
Pyy =10 if x#yandy ¢ N(x). (1)
T=2 ) Pxy if x=y (rejection)

MC finite, irreducible and aperiodic: 7t stationary distribution.
» We do not need to know 7, or 7ty but only their ratio 7ty /7!
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Lecture 15 - Glauber Dynamics

» Let V and S be finite sets and suppose Q C SV.
Ex: V vertices of a graph and S a set of colors (graph coloring).

> Let 7t be a probability distribution whose support is Q.
» The Glauber chain moves from state x as follows:

1. An element v is chosen uniformly at random from V.
2. A new state y is chosen s.t.: y(w) = x(w)Vw # v.

Definition
Givenxe Q,veV:Q(x,v)={ye Q:y(w)=x(w)Vw # v}. The
chain transition reads:

) if y € Q(x, v)

Py = T(yIQ(x, V) = {S(Q(X‘V” ity ¢ Q(x, ) @
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Lecture 16 - TV and Coupling

Our goal: We want to sample from a MC with stationary distribution 7t
in time poly(n) and log(1/¢€).

|
>

TV distance: |Dy — Da|| = 33 o 1D1(x) — Da(x)]

Lower bound mixing time:
|D1(A) — Dz(A)| < maxacq |Di(A) — Da(A)| = ||Dy — Dol

A coupling of two probability distributions p and v is a pair of
random variables (X, Y) defined on a single probability space,
i.e., a joint probability distribution g on Q x Q such that

> qlxy) =ulx)and Y qlx,y) = v(x) (3)

yeQ xeQ

Upper-bounds on TV: ||Dy — Ds|| < inf Pr(X # Y) for a coupling
(X,Y) of Dy and D-.

Mixing time: we want to prove that || P!(x, -) — nt|| < e fast enough

» Coupling lemma:

PriXr #YrlXo=x,Yo=y)<e = t(eJ<T
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Lecture 17 - Mixing time via contraction of distance
Neighborhood: states y € Q reachable from x in a single step.

» Distance d(X, Y): the amount of steps to reach y from x.
Neighbors if d(X, Y) = 1. Many times d(X, Y) < |V|.
» Distance at step t of MC: d; = d( X}, Y?)
> Pr(Xr # Y7|Xo = X, Yo = y) < maxy,, Pr(dr > 1) < max, , Eldr]
» Our goal is to bound maxy,, E[d7] < e.

» After some work... (see next slides)
Eld; 1] =< BE[d}], with < 1 (Contraction of expect. distance)
> lterate E[d7] =< BTdy < B7|V|

Therefore the chain is guaranteed to have mixed for all times, such
that B7|V| < e, leading to

1
T(e) = ——— (log|V| + log(1/€)).
(€) log(1/[3)( g |V]+log(1/€))
Many times we can write p = e~ */!"!, leading to
() = Y (log |V| + log(1/€)), where « can itself depend on
parameters of the problem.
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Lecture 17 - Path Coupling

» We define a distance d(X, Y). Neighbors if d(X, Y) = 1.
» Our goal is to prove concentration of expect. of distance:
Eldi 1] =< BE[di], with 3 < 1.
» Path: X; = 2y, 24, ....,Z4, = Yt where d(Z;;4,Z;) =1
> d; = Z, 1 d(Zi+1, Z) (by construction)
» Updated path: Xt+1 =25, Z{ ey Zg, = Yti1.
> dip1 < Z, 1d(Z/ 1,Z/) (by triangle inequality)

1. For your problem of interest prove
[d(Z,/JH) ,) 1< Bd( I+1)Z) = B

2. Leads tOEdt+1|dI ] < Z Z/+1) /) 1< Ba:.
3. Then E[d;, 1] = dt+1|dt =< BEI[d}].
Left to do: prove E[d(Z,’+1 ,Z/)] < p for our problem of interest.
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Lecture 18 - Ising Model

A spin system is a probability p(o) of configurations o € {+1,—1}",
defined in a graph G = (V, E).
» Interpretation as magnets: {+1,—1} being the orientation.

» The nearest-neighbor Ising model is the most studied spin
system. The energy of a configuration o is defined to be:

Ho)= Y zywo(vio(w)+ ) holz)  (4)
v,weV:(v,w)eE zeV
» Minimization of the energy maps to NP-hard problems:

»> Ferromagnetic
» Anti-ferromagnetic (MAX-CUT)
» Independent sets
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