
Randomized Algorithms
Lecture 20: Revision Lecture

Raul Garcia-Patron

School of Informatics
University of Edinburgh

RA (2023/24) – Lecture 20 – slide 1



EXAM INFORMATION

▶ Date: Monday, 11th December 2023. Time: 1:00-3:00 p.m.
▶ Answer two (2) questions, each question has equal weight
▶ This is a NOTES AND CALCULATORS PERMITTED

examination: candidates may consult up to THREE A4
pages (6 sides) of notes. CALCULATORS MAY BE USED
IN THIS EXAMINATION

▶ Read all questions before choosing and be “strategic”
▶ Do good time management!
▶ Past papers: mostly last year. Previous years other

instructors.
▶ Study Tutorials and train with past year exam, check

assignments.
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Lecture 11 - Stochastic processes

▶ A Stochastic process is a collection of random variables
X = {Xt : t ∈ T } (usually T = N0).

▶ Xt is the state of the process at time t ∈ T :

Definition (Marov chain)
A discrete-time stochastic process is said to be a Markov chain if

Pr[Xt = at | Xt−1 = at−1, . . . ,X0 = a0] = Pr[Xt = at | Xt−1 = at−1].

▶ Matrix representation

▶ Graph representation

▶ Iterations: p̄t = p̄0 · M t .

▶ Stationary distribution: π = πP.
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Lecture 11 - Convergence

Theorem (Convergence and detailed balance)
Consider a finite, irreducible, and aperiodic Markov chain with
transition matrix P.If there is a probability distribution π that for each
pair of state i , j satisfies detailed balance (time reversible chains)

πiPi,j = πjPj,i ,

then π is the unique stationary distribution corresponding to P.

Lemma (Irreducible)
A finite Markov chain is irreducible if and only if its graph
representation is a strongly connected graph.

▶ Curing periodicity: use of self-loops.
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Lecture 12 - 2-SAT Randomized Algorithm

Algorithm 2SATRANDOM(n;C1 ∧ C2 ∧ . . .∧ Cℓ)

1. Assign arbitrary values to each of the xi variables.
2. t ← 0
3. while (t < 2mn2 and some clause is unsatisfied) do
4. Choose an arbitrary Ch from all unsatisfied clauses;
5. Choose one of the 2 literals in Ch uniformly at random

and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. return this assignment to the x1, . . . xn else
8. return FAILED.
▶ Key idea: instead of quantifying success by number of clauses

satisfied by distance (Hamming wight) to a given solution.
▶ Analyse its performance by analogy to a Markov chain.
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Lecture 12 - Probability of failure
Theorem
The algorithm 2SATRANDOM perform up to 2mn2 iterations of the
while loop. Then, when there is a satisfying assignment for ϕ, the
probability that 2SATRANDOM does not discover one, is at most 2−m.

Proof.
1. Modify the algorithm to be run m times in parallel over “blocks" of

2n2 size.

2. Markov inequality guarantees a failure of 1/2 for 2E[Z0] = 2n2

iterations per block: P(Z0 > a) ≤ E[Z0]
2 , choose a = 2E[Z0].

3. If one of the m repetition succeeds we find the solution. We get
failure overall only if all the m blocks fail, i.e., Pf = (1/2)m = 2−m.

The algorithm 2SATRANDOM run the 2mn2 in a single loop, but this
can only reach the solution faster: instead of imputing m independent
input to each block, we can feed one block with the output of the
previous one.
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Lecture 13 - Monte Carlo Method

Definition (Generalization (Theorem 11.1))
Let X1, . . . ,Xm be independent and identically distributed indicator
random variables (ie Bernoulli with a fixed parameter), and µ = E[Xi ].
Then if m ≥ 3 ln( 2

δ
)

ϵ2µ
, we have

Pr

(∣∣ 1
m

m∑
i=1

Xi − µ
∣∣ ≥ ϵµ

)
≤ δ.

So for this m, sampling gives a (ϵ, δ)-approximation of µ.

Definition (FPRAS (Definition 11.2))
A fully polynomial randomized approximation scheme (FPRAS):

▶ Given input x , we want (ϵ, δ)−approximation of V (x).

▶ Achieved in time polynomial in 1/ϵ, in ln(1/δ) and size of x .
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Lecture 13 - The DNF counting problem
Disjunctive Normal Form (DNF):

▶ each clause is now a conjunction (∧, AND) literals

▶ we have disjunctions (∨, OR) of clauses

For example:

(x1 ∧ x̄2 ∧ x3)∨ (x2 ∧ x4)∨ (x̄1 ∧ x3 ∧ x4).

We are interested in counting the number of satisfying assignments.

▶ It is easy to find satisfying assignments or prove not satisfiable.

▶ It is NP-hard to compute the exact number of satisfying
assignments for a DNF.

▶ However, we can approximately count them.

▶ Naive sampling solution over 2n does not work!

▶ We need to sample from an initial non-trivial distribution
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Lecture 13 - Relations between sets

▶ We know how to compute |U | =
∑t

i=1 sn−|Ci |

▶ S is approx. of same size as U: |S|

|U|
≥ 1

t . Key to make the
sampling algorithm efficient.
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Lecture 14 - Markov chain Monte Carlo (MCMC)

The Markov chain Monte Carlo (MCMC) method provides a very
general approach to sampling from a desired probability distribution.

▶ The idea is to build a Markov chain M on the state space Ω that
we want to sample from.

▶ We ensure the stationary distribution of the Markov chain is
unique and corresponds to the target distribution.

▶ We can then run M to generate a sequence of X0,X1, . . . ,Xk of
states so Xk distribution is the stationary distribution: xk is our
output sample.

▶ How large k has to be to have a valid sample is called
mixing-time.

▶ Knowing the mixing-time of a Markov chain is non-trivial and will
be the core of the last section of the course.
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Lecture 14 - Approximate counting

Now consider the following telescoping product:

|Ω(G)| =
|Ω(Gm)|

|Ω(Gm−1)|
× |Ω(Gm−1)|

|Ω(Gm−2)|
× |Ω(Gm−2)|

|Ω(Gm−3)|
×. . .× |Ω(G1)|

|Ω(G0)|
×|Ω(G0)|.

▶ |Ω(G0)| = 2n as every subset of V is an I.S. for G0 (G0 has no
edges!).

▶ We will show how to obtain close approximate values r̃i for each
ratio ri =

|Ω(Gi)|
|Ω(Gi−1)|

, for i = 1, . . . ,m.

▶ Our estimate for the number of I.S.s will be:

2n
m∏

i=1

r̃i .
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Lecture 15 - Metropolis Algorithm

We may want to sample from a nonuniform distribution.

For a finite state space Ω and neighborhood structure
{N(X )|x ∈ Ω}, let N = maxx∈Ω |N(x)|. Let M be any number
such that M > N. For all x ∈ Ω, let πx > 0 be the desired
probability of state x in the stationary distribution. Consider a
Markov chain where

Px ,y =


1/M min(1, πy/πx) if x ̸= y andy ∈ N(x).
0 if x ̸= y andy /∈ N(x).
1 −
∑

y ̸=x Px ,y if x = y (rejection)
(1)

MC finite, irreducible and aperiodic: π stationary distribution.
▶ We do not need to know πx or πy , but only their ratio πx/πy !
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Lecture 15 - Glauber Dynamics

▶ Let V and S be finite sets and suppose Ω ⊆ SV .
Ex: V vertices of a graph and S a set of colors (graph coloring).

▶ Let π be a probability distribution whose support is Ω.

▶ The Glauber chain moves from state x as follows:

1. An element v is chosen uniformly at random from V .
2. A new state y is chosen s.t.: y(w) = x(w)∀w ̸= v .

Definition
Given x ∈ Ω, v ∈ V : Ω(x , v) = {y ∈ Ω : y(w) = x(w)∀w ̸= v }. The
chain transition reads:

Px,y = π(y |Ω(x , v)) =

{
π(y)

π(Ω(x,v)) if y ∈ Ω(x , v)
0 if y /∈ Ω(x , v)

(2)
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Lecture 16 - TV and Coupling
Our goal: We want to sample from a MC with stationary distribution π
in time poly(n) and log(1/ϵ).

▶ TV distance: ∥D1 − D2∥ = 1
2

∑
x∈Ω |D1(x) − D2(x)|

▶ Lower bound mixing time:
|D1(A) − D2(A)| ≤ maxA⊆Ω |D1(A) − D2(A)| = ||D1 − D2||

▶ A coupling of two probability distributions µ and ν is a pair of
random variables (X ,Y ) defined on a single probability space,
i.e., a joint probability distribution q on Ω×Ω such that∑

y∈Ω

q(x , y) = µ(x)and
∑
x∈Ω

q(x , y) = ν(x) (3)

▶ Upper-bounds on TV: ||D1 − D2|| ≤ inf Pr(X ̸= Y ) for a coupling
(X ,Y ) of D1 and D2.

▶ Mixing time: we want to prove that ∥P t(x , ·) − π∥ ≤ ϵ fast enough

▶ Coupling lemma:
Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ ϵ ⇒ τ(ϵ) ≤ T
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Lecture 17 - Mixing time via contraction of distance
Neighborhood: states y ∈ Ω reachable from x in a single step.
▶ Distance d(X ,Y ): the amount of steps to reach y from x .

Neighbors if d(X ,Y ) = 1. Many times d(X ,Y ) ≤ |V |.
▶ Distance at step t of MC: dt = d(Xt ,Yt)

▶ Pr(XT ̸= YT |X0 = x ,Y0 = y) ≤ maxx,y Pr(dT ≥ 1) ≤ maxx,y E [dT ]

▶ Our goal is to bound maxx,y E[dT ] ≤ ϵ.
▶ After some work... (see next slides)

E[dt+1] =≤ βE[dt ], with β < 1 (Contraction of expect. distance)
▶ Iterate E[dT ] =≤ βT d0 ≤ βT |V |

Therefore the chain is guaranteed to have mixed for all times, such
that βT |V | ≤ ϵ, leading to

τ(ϵ) =
1

log(1/β)
(log |V |+ log(1/ϵ)) .

Many times we can write β = e−α/|V |, leading to
τ(ϵ) = |V |

α
(log |V |+ log(1/ϵ)), where α can itself depend on

parameters of the problem.
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Lecture 17 - Path Coupling

▶ We define a distance d(X ,Y ). Neighbors if d(X ,Y ) = 1.
▶ Our goal is to prove concentration of expect. of distance:

E[dt+1] =≤ βE[dt ], with β < 1.
▶ Path: Xt = Z0,Z1, ....,Zdt = Yt where d(Zi+1,Zi) = 1

▶ dt =
∑dt

i=1 d(Zi+1,Zi) (by construction)
▶ Updated path: Xt+1 = Z ′

0,Z
′

1, ....,Z
′

dt
= Yt+1.

▶ dt+1 ≤
∑dt

i=1 d(Z ′
i+1,Z

′
i ) (by triangle inequality)

1. For your problem of interest prove
E[d(Z ′

i+1,Z
′

i )] ≤ βd(Zi+1,Zi) = β.

2. Leads to E[dt+1|dt ] ≤
∑dt

i=1 E[d(Z ′
i+1,Z

′
i )] ≤ βdt .

3. Then E[dt+1] = E[E[dt+1|dt ]] =≤ βE[dt ].
Left to do: prove E[d(Z ′

i+1,Z
′

i )] ≤ β for our problem of interest.
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Lecture 18 - Ising Model

A spin system is a probability p(σ) of configurations σ ∈ {+1,−1}V ,
defined in a graph G = (V ,E).

▶ Interpretation as magnets: {+1,−1} being the orientation.

▶ The nearest-neighbor Ising model is the most studied spin
system. The energy of a configuration σ is defined to be:

H(σ) =
∑

v,w∈V :(v,w)∈E

zv,wσ(v)σ(w) +
∑
z∈V

hzσ(z) (4)

▶ Minimization of the energy maps to NP-hard problems:

▶ Ferromagnetic
▶ Anti-ferromagnetic (MAX-CUT)
▶ Independent sets
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