Randomized Algorithms
 Lecture 20: Revision Lecture

Raul Garcia-Patron

School of Informatics
University of Edinburgh

EXAM INFORMATION

- Date: Monday, 11th December 2023. Time: 1:00-3:00 p.m.
- Answer two (2) questions, each question has equal weight
- This is a NOTES AND CALCULATORS PERMITTED examination: candidates may consult up to THREE A4 pages (6 sides) of notes. CALCULATORS MAY BE USED IN THIS EXAMINATION
- Read all questions before choosing and be "strategic"
- Do good time management!
- Past papers: mostly last year. Previous years other instructors.
- Study Tutorials and train with past year exam, check assignments.

Lecture 11 - Stochastic processes

- A Stochastic process is a collection of random variables $\mathbf{X}=\left\{X_{t}: t \in T\right\}$ (usually $T=\mathbb{N}^{0}$).
- X_{t} is the state of the process at time $t \in T$:

Definition (Marov chain)
A discrete-time stochastic process is said to be a Markov chain if

$$
\operatorname{Pr}\left[X_{t}=a_{t} \mid X_{t-1}=a_{t-1}, \ldots, X_{0}=a_{0}\right]=\operatorname{Pr}\left[X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right] .
$$

- Matrix representation
- Graph representation
- Iterations: $\bar{p}_{t}=\bar{p}_{0} \cdot M^{t}$.
- Stationary distribution: $\pi=\pi P$.

Lecture 11 - Convergence

Theorem (Convergence and detailed balance)
Consider a finite, irreducible, and aperiodic Markov chain with transition matrix P.If there is a probability distribution π that for each pair of state i, j satisfies detailed balance (time reversible chains)

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i},
$$

then π is the unique stationary distribution corresponding to P.
Lemma (Irreducible)
A finite Markov chain is irreducible if and only if its graph representation is a strongly connected graph.

- Curing periodicity: use of self-loops.

RA (2023/24) - Lecture 20 - slide 4

Lecture 12-2-SAT Randomized Algorithm

Algorithm 2SATRANDOM $\left(n ; C_{1} \wedge C_{2} \wedge \ldots \wedge C_{\ell}\right)$

1. Assign arbitrary values to each of the x_{i} variables.
2. $t \leftarrow 0$
3. while ($t<2 m n^{2}$ and some clause is unsatisfied) do
4. Choose an arbitrary C_{h} from all unsatisfied clauses;
5. Choose one of the 2 literals in C_{h} uniformly at random and flip the value of its variable;
6. if (we end with a satisfying assignment) then
7. return this assignment to the $x_{1}, \ldots x_{n}$ else
8. return FAILED.

- Key idea: instead of quantifying success by number of clauses satisfied by distance (Hamming wight) to a given solution.
- Analyse its performance by analogy to a Markov chain.

Lecture 12 - Probability of failure

Theorem

The algorithm 2SATRANDOM perform up to $2 \mathrm{mn}^{2}$ iterations of the while loop. Then, when there is a satisfying assignment for ϕ, the probability that 2SATRANDOM does not discover one, is at most 2^{-m}.

Proof.

1. Modify the algorithm to be run m times in parallel over "blocks" of $2 n^{2}$ size.
2. Markov inequality guarantees a failure of $1 / 2$ for $2 \mathrm{E}\left[Z_{0}\right]=2 n^{2}$ iterations per block: $P\left(Z_{0}>a\right) \leq \frac{\mathrm{E}\left[Z_{0}\right]}{2}$, choose $a=2 \mathrm{E}\left[Z_{0}\right]$.
3. If one of the m repetition succeeds we find the solution. We get failure overall only if all the m blocks fail, i.e., $P_{f}=(1 / 2)^{m}=2^{-m}$.

The algorithm 2SATRANDOM run the $2 m n^{2}$ in a single loop, but this can only reach the solution faster: instead of imputing m independent input to each block, we can feed one block with the output of the previous one.

RA (2023/24) - Lecture 20 - slide 6

Lecture 13 - Monte Carlo Method

Definition (Generalization (Theorem 11.1))

Let X_{1}, \ldots, X_{m} be independent and identically distributed indicator random variables (ie Bernoulli with a fixed parameter), and $\mu=\mathrm{E}\left[X_{i}\right]$.
Then if $m \geq \frac{3 \ln \left(\frac{2}{5}\right)}{\epsilon^{2} \mu}$, we have

$$
\operatorname{Pr}\left(\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \geq \epsilon \mu\right) \leq \delta
$$

So for this m, sampling gives a (ϵ, δ)-approximation of μ.
Definition (FPRAS (Definition 11.2))
A fully polynomial randomized approximation scheme (FPRAS):

- Given input x, we want (ϵ, δ)-approximation of $V(x)$.
- Achieved in time polynomial in $1 / \epsilon$, in $\ln (1 / \delta)$ and size of x.

RA (2023/24) - Lecture 20 - slide 7

Lecture 13 - The DNF counting problem

Disjunctive Normal Form (DNF):

- each clause is now a conjunction (\wedge, AND) literals
- we have disjunctions $(\checkmark, O R)$ of clauses

For example:

$$
\left(x_{1} \wedge \bar{x}_{2} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{4}\right) \vee\left(\bar{x}_{1} \wedge x_{3} \wedge x_{4}\right)
$$

We are interested in counting the number of satisfying assignments.

- It is easy to find satisfying assignments or prove not satisfiable.
- It is NP-hard to compute the exact number of satisfying assignments for a DNF.
- However, we can approximately count them.
- Naive sampling solution over 2^{n} does not work!
- We need to sample from an initial non-trivial distribution

Lecture 13 - Relations between sets

- We know how to compute $|U|=\sum_{i=1}^{t} s^{n-\left|C_{i}\right|}$
- S is approx. of same size as $U: \frac{|S|}{|U|} \geq \frac{1}{t}$. Key to make the sampling algorithm efficient.

Lecture 14 - Markov chain Monte Carlo (MCMC)

The Markov chain Monte Carlo (MCMC) method provides a very general approach to sampling from a desired probability distribution.

- The idea is to build a Markov chain M on the state space Ω that we want to sample from.
- We ensure the stationary distribution of the Markov chain is unique and corresponds to the target distribution.
- We can then run M to generate a sequence of $X_{0}, X_{1}, \ldots, X_{k}$ of states so X_{k} distribution is the stationary distribution: x_{k} is our output sample.
- How large k has to be to have a valid sample is called mixing-time.
- Knowing the mixing-time of a Markov chain is non-trivial and will be the core of the last section of the course.

RA (2023/24) - Lecture 20 - slide 10

Lecture 14 - Approximate counting

Now consider the following telescoping product:

$$
|\Omega(G)|=\frac{\left|\Omega\left(G_{m}\right)\right|}{\left|\Omega\left(G_{m-1}\right)\right|} \times \frac{\left|\Omega\left(G_{m-1}\right)\right|}{\left|\Omega\left(G_{m-2}\right)\right|} \times \frac{\left|\Omega\left(G_{m-2}\right)\right|}{\left|\Omega\left(G_{m-3}\right)\right|} \times \ldots \times \frac{\left|\Omega\left(G_{1}\right)\right|}{\left|\Omega\left(G_{0}\right)\right|} \times\left|\Omega\left(G_{0}\right)\right| .
$$

- $\left|\Omega\left(G_{0}\right)\right|=2^{n}$ as every subset of V is an I.S. for $G_{0}\left(G_{0}\right.$ has no edges!).
- We will show how to obtain close approximate values \tilde{r}_{i} for each ratio $r_{i}=\frac{\left|\Omega\left(G_{i}\right)\right|}{\Omega\left(G_{i-1}\right) \mid}$, for $i=1, \ldots, m$.
- Our estimate for the number of I.S.s will be:

$$
2^{n} \prod_{i=1}^{m} \tilde{r}_{i} .
$$

RA (2023/24) - Lecture 20 - slide 11

Lecture 15 - Metropolis Algorithm

We may want to sample from a nonuniform distribution.
For a finite state space Ω and neighborhood structure $\{N(X) \mid x \in \Omega\}$, let $N=\max _{x \in \Omega}|N(x)|$. Let M be any number such that $M>N$. For all $x \in \Omega$, let $\pi_{x}>0$ be the desired probability of state x in the stationary distribution. Consider a Markov chain where

$$
P_{x, y}= \begin{cases}1 / M \min \left(1, \pi_{y} / \pi_{x}\right) & \text { if } x \neq y \text { and } y \in N(x) . \tag{1}\\ 0 & \text { if } x \neq y \text { and } y \notin N(x) . \\ 1-\sum_{y \neq x} P_{x, y} & \text { if } x=y \quad \text { (rejection) }\end{cases}
$$

MC finite, irreducible and aperiodic: π stationary distribution.

- We do not need to know π_{x} or π_{y}, but only their ratio π_{x} / π_{y} !

Lecture 15 - Glauber Dynamics

- Let V and S be finite sets and suppose $\Omega \subseteq S^{V}$. Ex: V vertices of a graph and S a set of colors (graph coloring).
- Let π be a probability distribution whose support is Ω.
- The Glauber chain moves from state x as follows:

1. An element v is chosen uniformly at random from V.
2. A new state y is chosen s.t.: $y(w)=x(w) \forall w \neq v$.

Definition

Given $x \in \Omega, v \in V: \Omega(x, v)=\{y \in \Omega: y(w)=x(w) \forall w \neq v\}$. The chain transition reads:

$$
P_{x, y}=\pi(y \mid \Omega(x, v))= \begin{cases}\frac{\pi(y)}{\pi(\Omega(x, v))} & \text { if } y \in \Omega(x, v) \tag{2}\\ 0 & \text { if } y \notin \Omega(x, v)\end{cases}
$$

RA (2023/24) - Lecture 20 - slide 13

Lecture 16 - TV and Coupling

Our goal: We want to sample from a MC with stationary distribution π in time poly (n) and $\log (1 / \epsilon)$.

- TV distance: $\left\|D_{1}-D_{2}\right\|=\frac{1}{2} \sum_{x \in \Omega}\left|D_{1}(x)-D_{2}(x)\right|$
- Lower bound mixing time:
$\left|D_{1}(A)-D_{2}(A)\right| \leq \max _{A \subseteq \Omega}\left|D_{1}(A)-D_{2}(A)\right|=\left\|D_{1}-D_{2}\right\|$
- A coupling of two probability distributions μ and v is a pair of random variables (X, Y) defined on a single probability space, i.e., a joint probability distribution q on $\Omega \times \Omega$ such that

$$
\begin{equation*}
\sum_{y \in \Omega} q(x, y)=\mu(x) \text { and } \sum_{x \in \Omega} q(x, y)=v(x) \tag{3}
\end{equation*}
$$

- Upper-bounds on TV: \|D $D_{1}-D_{2} \| \leq \inf \operatorname{Pr}(X \neq Y)$ for a coupling (X, Y) of D_{1} and D_{2}.
- Mixing time: we want to prove that $\left\|P^{t}(x, \cdot)-\pi\right\| \leq \epsilon$ fast enough
- Coupling lemma:
$\operatorname{Pr}\left(X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right) \leq \epsilon \quad \Rightarrow \quad \tau(\epsilon) \leq T$
RA (2023/24) - Lecture 20 - slide 14

Lecture 17 - Mixing time via contraction of distance

Neighborhood: states $y \in \Omega$ reachable from x in a single step.

- Distance $d(X, Y)$: the amount of steps to reach y from x. Neighbors if $d(X, Y)=1$. Many times $d(X, Y) \leq|V|$.
- Distance at step t of MC: $d_{t}=d\left(X_{t}, Y_{t}\right)$
$-\operatorname{Pr}\left(X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right) \leq \max _{x, y} \operatorname{Pr}\left(d_{T} \geq 1\right) \leq \max _{x, y} E\left[d_{T}\right]$
- Our goal is to bound $\max _{x, y} \mathbf{E}\left[d_{T}\right] \leq \epsilon$.
- After some work... (see next slides) $\mathbf{E}\left[d_{t+1}\right]=\leq \beta \mathbf{E}\left[d_{t}\right]$, with $\beta<1$ (Contraction of expect. distance)
- Iterate $\mathbf{E}\left[d_{T}\right]=\leq \beta^{T} d_{0} \leq \beta^{T}|V|$

Therefore the chain is guaranteed to have mixed for all times, such that $\beta^{T}|V| \leq \epsilon$, leading to

$$
\tau(\epsilon)=\frac{1}{\log (1 / \beta)}(\log |V|+\log (1 / \epsilon)) .
$$

Many times we can write $\beta=e^{-\alpha /|V|}$, leading to $\tau(\epsilon)=\frac{|V|}{\alpha}(\log |V|+\log (1 / \epsilon))$, where α can itself depend on parameters of the problem.

RA (2023/24) - Lecture 20 - slide 15

Lecture 17 - Path Coupling

- We define a distance $d(X, Y)$. Neighbors if $d(X, Y)=1$.
- Our goal is to prove concentration of expect. of distance: $\mathbf{E}\left[d_{t+1}\right]=\leq \beta \mathbf{E}\left[d_{t}\right]$, with $\beta<1$.
- Path: $X_{t}=Z_{0}, Z_{1}, \ldots ., Z_{d_{t}}=Y_{t}$ where $d\left(Z_{i+1}, Z_{i}\right)=1$
- $d_{t}=\sum_{i=1}^{d_{t}} d\left(Z_{i+1}, Z_{i}\right)$ (by construction)
- Updated path: $X_{t+1}=Z_{0}^{\prime}, Z_{1}^{\prime}, \ldots ., Z_{d_{t}}^{\prime}=Y_{t+1}$.
- $d_{t+1} \leq \sum_{i=1}^{d_{t}} d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)$ (by triangle inequality)

1. For your problem of interest prove $\mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta d\left(Z_{i+1}, Z_{i}\right)=\beta$.
2. Leads to $\mathbf{E}\left[d_{t+1} \mid d_{t}\right] \leq \sum_{i=1}^{d_{t}} \mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta d_{t}$.
3. Then $\mathbf{E}\left[d_{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[d_{t+1} \mid d_{t}\right]\right]=\leq \beta \mathbf{E}\left[d_{t}\right]$.

Left to do: prove $\mathbf{E}\left[d\left(Z_{i+1}^{\prime}, Z_{i}^{\prime}\right)\right] \leq \beta$ for our problem of interest.

RA (2023/24) - Lecture 20 - slide 16

Lecture 18 - Ising Model

A spin system is a probability $p(\sigma)$ of configurations $\sigma \in\{+1,-1\}^{V}$, defined in a graph $G=(V, E)$.

- Interpretation as magnets: $\{+1,-1\}$ being the orientation.
- The nearest-neighbor Ising model is the most studied spin system. The energy of a configuration σ is defined to be:

$$
\begin{equation*}
H(\sigma)=\sum_{v, w \in V:(v, w) \in E} z_{v, w} \sigma(v) \sigma(w)+\sum_{z \in V} h_{z} \sigma(z) \tag{4}
\end{equation*}
$$

- Minimization of the energy maps to NP-hard problems:
- Ferromagnetic
- Anti-ferromagnetic (MAX-CUT)
- Independent sets

