
Randomness and Computation 2022
Tutorial 6 (week 9)

Solution

1. Sampling from Independent Sets of a graph. A independent set (IS) of a graph G =
(V, E) is a set of vertices belonging to V for which no edge e ∈ E connects two vertices of the
set. We want to construct a Markov chain that allows to sample uniformly at random from the
ensemble of independent sets of G, where G is assumed to be composed of a single connected
component. Let’s defined the following Markov chain Xt over the space ΩIS of independent
set (Section 12.6 of Mitzenmacher and Upfal). Let’s X0 be a trivial IS, for example the empty
set. Then at each step we:

• Select an edge e = (u, v) ∈ E from the graph uniformly at random.

• We proceed as follows:

– (M1): with probability 1/3 set Xt+1 = Xt − {u, v}

– (M2): with probability 1/3 let Y = (Xt − {u}) ∪ {v}. If Y is an IS, then Xt+1 = Y;
otherwise Xt+1 = Xt (M2).

– (M3): with probability 1/3 let Y = (Xt − {v}) ∪ {u}. If Y is an IS, then Xt+1 = Y;
otherwise Xt+1 = Xt (M3).

(a) Explain the effect of the three action that have 1/3 probability in the MC.

(b) Show that the MC is irreversible and aperiodic.

(c) Use detail balance to show that it converges to the uniform distribution over ΩIS.

Solution

(a) Lets enumerate the effect of each action:

• M1: If the two vertices u and v of the selected edge do not belong to the current
IS Xy, i.e, {u, c} /∈ Xt then Xt+1 = Xt. The onlt other option is that one of the two
belongs to Xt, as by definition two vertices connected by an edge can not belong to
an IS. Therefore, if {u} ∈ Xt we have Xt+1 = Xt − {u} and similarly for v.

• M2: If {u, v} /∈ Xt we have Xt+1 = Xt + v. If u ∈ Xt and v /∈ Xt we get instead
Xt+1 = Xt + v− u. Otherwise, If u /∈ Xt and v ∈ Vt, we get Xt+1 = Xt.

• M3: If {u, v} /∈ Xt we have Xt+1 = Xt + u. If v ∈ Xt and u /∈ Xt we get instead
Xt+1 = Xt + u− v. Otherwise, If v /∈ Xt and u ∈ Vt, we get Xt+1 = Xt.

(b) It is always possible two connect two IS via a walk over the space ΩIS using movement
between neighboring IS that are different only in one exact vertex. This is possible
because removing one vertex from an IS always generates another IS. So at worst there
is a path from IS1 to IS2 passing via the empty set. The Markov chain below will always
have a non-zero probability to produce the required steps, therefore there is always a
non-zero probability of transitioning from IS1 to IS2. The MC is aperiodic as there is
always a non-zero probability of remaining in the same IS that we started.
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(c) Let assume that we have two independent set X and Y. Because the detailed balance
condition πiPi,j = πjPj,i concerns IS that are strictly different, we are interested in two
scenarios: (Case I) where |X| = |Y| but they differ in two vertices, which can only be
reached via moves M2 and M3, and |X| = |Y|± 1.

• Case I: without lost of generality we can consider X = Y−v+u. In this scenario the
transition from X to Y has non-zero probability and involves selecting the edge (u, v)
followed by selecting move M2, giving a probability of transition Px,y = 1/(3|E|).
The transition from Y to X involves also selecting the edge (u, v) but now the move
M3, which has the same probability 1/(3|E|).

• Case II: Let’s assume that X = Y+u, where the scenario Y = X+u follows a similar
argument. The transition from X to Y need the selection of one edge e = (u, v)
for which v does not belong to X, followed by the move M3. Let’s define P(u) =∑

(u,v):v/∈X P(e = (u, v)), the transition probability reads Px,y = 1/3P(u). Similarly,
the transition from Y to X can only happen selection an edge e = (u, v) for which v

does not belong to X followed by move M1, which has also probability 1/3P(u).
let’s define the probability of selecting that edge being Pe that contains the vertex
u

2. *An s-t connectivity algorithm using O(logn) space. Let a graph G = (V, E) and two
vertices s and t in G. Let |V | = n and |E| = m. One can easily find a connection between s and
t in linear time using standard breath-first search or depth-first search, however, requiring
Ω(n) space. Consider the following algorithm:

• Start a random walk from s

• If the walk reaches t within 4n3 steps, return that there is a path.

• Otherwise return no path exists.

(a) Discuss why the algorithm needs only O(logn) space.

(b) Using the relation between hitting time and the stationary distribution, i.e., hi,i =
1/π(i), proof that hx,y, i.e., the expected time to reach x from y, satisfies hx,y < 2m.

(c) The cover of G is the maximum over all v ∈ V of the expected time to visit all nodes
starting from v. Show that the cover time is bounded by 4nm.

(d) Show that the algorithm only errs by returning there is no path when there is one with
probability smaller than 1/2.

(e) Discuss how to reduce that probability to a very small constant δ.

Solution:

(a) The algorithm only needs to keep track of the current position and the number of step
taken in the random walk, both can be done in time O(logn), where the number of steps
is bounded by 4n3.
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(b) Let N(u) be the set of neighbors of vertex u in G and hw,u the expected time to reach
u from w, We can write:

2|E|

d(u)
=

1

π(u)
= hu,u =

1

d(u)

∑
w∈N(u)

(1+ hw,u), (1)

where in the last equality we used the fact the the expectation of returning to u should be
the expectation of the time to go to u from its neighbors w averaged over the probability
of going to w from u as first step of the walk. Therefore,

2|E| =
∑

w∈N(u)

(1+ hw,u), (2)

which easily implies hw,u < 2|E|.

(c) Choose a spanning tree of G; that is, any subset of the edges that gives an acyclic graph
connecting all vertices of G. There exist a cyclic tour on this spanning tree in which
every edge is traversed once in each direction (ex: sequences of vertices passed through
when doing depth-first search). Let v0, v1, ..., v2|V |−2 = v0 be the sequence of vertices in
the tour. The expected time to go over all this vertices in the tour is an upper-bound
to the cover time. Hence, the cover time is bounded above by

2|V |−3∑
i=0

hvi,vi+1
< (2|V |− 2)(2|E|) < 4|V ||E|, (3)

where we used the result in the previous sub-question in the first inequality.

(d) Remark that 4|V ||E| = 4nm ≤ 2n3 (as m ≤ n2/2). Using Markov inequality, it is easy
to show that the probability of non finding the path on time > 2hs,t = 4n3 is smaller
than 1/2. The choice of bounding the algorithm to 4n3 was done to exactly guarantee
this probability or error < 1/2.

(e) Repeating the algorithm M times and only deciding to output ”no path” when the M

runs agree on a ”no path”solution, we can decrease the failure probability from 1/2 to
1/2M, which allow us to decrease the failure probability to δ by choosing M = log(1/δ).

Raul Garcia-Patron Sanchez
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