## Randomness and Computation 2023

Tutorial 6 (week 8)
Issue date: Wednesday, 1th November, 2023.

1. Sampling from Independent Sets of a graph. A independent set (IS) of a graph $G=$ $(V, E)$ is a set of vertices belonging to $V$ for which no edge $e \in E$ connects two vertices of the set. We want to construct a Markov chain that allows to sample uniformly at random from the ensemble of independent sets of G, where G is assumed to be composed of a single connected component. Let's defined the following Markov chain $X_{t}$ over the space $\Omega_{\text {IS }}$ of independent set (Section 12.6 of Mitzenmacher and Upfal). Let's $X_{0}$ be a trivial IS, for example the empty set. Then at each step we:

- Select an edge $e=(u, v) \in E$ from the graph uniformly at random.
- We proceed as follows:
- (M1): with probability $1 / 3$ set $X_{t+1}=X_{t}-\{u, v\}$
- (M2): with probability $1 / 3$ let $Y=\left(X_{t}-\{u\}\right) \cup\{v\}$. If $Y$ is an IS, then $X_{t+1}=Y$; otherwise $X_{t+1}=X_{t}(M 2)$.
$-(\mathrm{M} 3)$ : with probability $1 / 3$ let $\mathrm{Y}=\left(\mathrm{X}_{\mathrm{t}}-\{v\}\right) \cup\{u\}$. If Y is an IS, then $X_{\mathrm{t}+1}=\mathrm{Y}$; otherwise $X_{t+1}=X_{t}(M 3)$.
(a) Explain the effect of the three action that have $1 / 3$ probability in the MC.
(b) Show that the MC is irreversible and aperiodic.
(c) Use detail balance to show that it converges to the uniform distribution over $\Omega_{\text {IS }}$.

2. An s-t connectivity algorithm using $O(\log n)$ space. We are given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two vertices s and t in G . Let $|\mathrm{V}|=\mathrm{n}$ and $|\mathrm{E}|=\mathrm{m}$. One can easily find a connection between $s$ and $t$ in linear time using standard breath-first search or depth-first search, however, requiring $\Omega(\mathrm{n})$ space. Consider the following algorithm:

- Start a random walk from $s$
- If the walk reaches t within $4 \mathrm{n}^{3}$ steps, return that there is a path.
- Otherwise return no path exists.
(a) Discuss why the algorithm needs only $\mathrm{O}(\log \mathfrak{n})$ work memory space, assuming the graph G is given as input on read-only memory.
(b) Proof that the expected time to reach $x$ from $y$ noted as $h_{x, y}$, satisfies the inequality $h_{x, y}<2 m$, exploiting the relation between the expected time to return and the stationary distribution $h_{i, i}=1 / \pi(i)$ (Theorem 7.7 of Mitzenmacher and Upfal).
(c) The cover time of G is the maximum over all $v \in \mathrm{~V}$ of the expected time to visit all nodes starting from $v$. Show that the cover time is bounded by 4 nm .
(d) Prove that the algorithm only errs by returning there is no path when there is indeed one with probability smaller than $1 / 2$.
(e) Discuss how to reduce that probability to a very small constant $\delta$.

Raul Garcia-Patron Sanchez

