Randomness and Computation 2023 Tutorial 6 (week 8) Issue date: Wednesday, 1th November, 2023.

- 1. Sampling from Independent Sets of a graph. A independent set (IS) of a graph G = (V, E) is a set of vertices belonging to V for which no edge $e \in E$ connects two vertices of the set. We want to construct a Markov chain that allows to sample uniformly at random from the ensemble of independent sets of G, where G is assumed to be composed of a single connected component. Let's defined the following Markov chain X_t over the space Ω_{IS} of independent set (Section 12.6 of Mitzenmacher and Upfal). Let's X_0 be a trivial IS, for example the empty set. Then at each step we:
 - Select an edge $e = (u, v) \in E$ from the graph uniformly at random.
 - We proceed as follows:
 - (M1): with probability 1/3 set $X_{t+1} = X_t \{u, \nu\}$
 - (M2): with probability 1/3 let $Y=(X_t-\{u\})\cup\{\nu\}.$ If Y is an IS, then $X_{t+1}=Y;$ otherwise $X_{t+1}=X_t$ (M2).
 - (M3): with probability 1/3 let $Y=(X_t-\{\nu\})\cup\{u\}.$ If Y is an IS, then $X_{t+1}=Y;$ otherwise $X_{t+1}=X_t$ (M3).
 - (a) Explain the effect of the three action that have 1/3 probability in the MC.
 - (b) Show that the MC is irreversible and aperiodic.
 - (c) Use detail balance to show that it converges to the uniform distribution over $\Omega_{\rm IS}$.
- 2. An s-t connectivity algorithm using $O(\log n)$ space. We are given an undirected graph G = (V, E) and two vertices s and t in G. Let |V| = n and |E| = m. One can easily find a connection between s and t in linear time using standard breath-first search or depth-first search, however, requiring $\Omega(n)$ space. Consider the following algorithm:
 - Start a random walk from s
 - If the walk reaches t within $4n^3$ steps, return that there is a path.
 - Otherwise return no path exists.
 - (a) Discuss why the algorithm needs only $O(\log n)$ work memory space, assuming the graph G is given as input on read-only memory.
 - (b) Proof that the expected time to reach x from y noted as $h_{x,y}$, satisfies the inequality $h_{x,y} < 2m$, exploiting the relation between the expected time to return and the stationary distribution $h_{i,i} = 1/\pi(i)$ (Theorem 7.7 of Mitzenmacher and Upfal).
 - (c) The cover time of G is the maximum over all $\nu \in V$ of the expected time to visit all nodes starting from ν . Show that the cover time is bounded by 4nm.
 - (d) Prove that the algorithm only errs by returning there is no path when there is indeed one with probability smaller than 1/2.

(e) Discuss how to reduce that probability to a very small constant $\delta.$

Raul Garcia-Patron Sanchez