
Randomness and Computation 2023
Tutorial 7 (week 9)

Solution

1. Mixing time of a frog living in a pond with two lily pads. Let’s return to the scenario
of problem 1 of tutorial 5 of a random walk of a frog between two lily pads.

The frog tosses a coin every morning to decide on which lily pad it will stay for the rest
of the day. If the coin lands head, the frog switches to the other lily pad, or otherwise, it
lands tail and the frog remains on the same lily pad. Each lily pad has its own coin, with
probability of landing head of p for the left lily pad and probability q for the right lily pad.
Let (X0, X1, ....Xt, ...) the Markov Chain associated with the sequence of lilly pads occupied
by the frog. The transition matrix of the Markov chain reads:

P(x, y) =

(
1− p p

q 1− q

)
and its stationary distribution is π(r) = p

p+q and π(l) = q
p+q .

(a) Given the distribution Pt(x, y) resulting from applying t iteration of the Markov chain
to the input x (resulting in output y), prove that its total variation distance with the
stationary distribution π satisfies the relation:

∆t
x = ∥Pt(x, ·) − π∥ = |Pt(x, r) − π(r)| = |Pt(x, l) − π(l)|

(b) Write ∆t+1
x as a function of ∆t

x.

(c) Write ∆t+1
x as a function of ∆0

x.

(d) What is the mixing time of this this Markov chain?

(e) Discuss the pathological cases where there is no mixing.

(f) Non-examinable additional question: Compute the eigenvalues of the matrix P and
compare to the contraction value of ∆t

x.

Solution:

(a) We have

∆t
x = ∥Pt(x, ·) − π∥ =

1

2

(
|Pt(x, r) − π(r)|+ |Pt(x, l) − π(l)|

)
.

The relations π(r) + π(l) = 1 and Pt(x, r) + Pt(x, l) = 1 (there is only two possibles
states), allows us to write

|Pt(x, r) − π(r)| = |Pt(x, l) − π(l)|,

which combined with the initial equation leads to the solution.
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(b) It is easy to see that Pt+1(x, r) = (1−p)Pt(x, r)+qPt(x, l) = (1−p)Pt(x, r)+q(1−Pt(x, r)).
Therefore, one can write

∆t+1
x = |Pt+1(x, ·)− q

p+ q
| = |(1−(p+q))Pt(x, r)−

p

p+ q
+q| = |(1−(p+q))(Pt(x, r)−π(r))| = ∆t

x.

(c) One can easily see that ∆t+1
x = (1 − (p + q))∆t

x implies, by iteration, ∆t+1
x = (1 − (p +

q))t∆0
x.

(d) We will have mixing when Deltat
x ≤ ϵ for both x = {r, l}. Because ∆0

x ≤ 1 by definition
of total variation distance, we have the general bound ∆t

r,l ≤ (1 − (p + q))t ≤ e−(p+q)t.
This will be ϵ−small when

T ≥ 1

p+ q
log

1

ϵ
,

Therefore τ(ϵ) = 1/(p+ q) log(1/ϵ).

(e) When p = q = 0 the total variation distance does not contract as there is no change
from the initial state of the chain. When p = q = 1 there is always change of state, and
the total variation distance also does not contract.

(f) The eigenvalues λ of P should satisfy the relation:

det

(
1− p− λ p

q 1− q− λ

)
= 0

After some standard linear algebra we find two eigenvalues λ1 = 1 and λ2 = 1 − (p +
q). The first is related to the fact that πP = π, i.e., the stationary distribution is an
eigenvector of P of eigenvalue λ1 = 1. The second eiganvalue λ2 = 1− (p+ q) satisfying
|λ2| < 1 is a condition for mixing for all irreducible and aperiodic Markov chains and also
can be related to the mixing time τ(ϵ) = 1

λ2
log(1/(ϵπmin)), where πmin = minx π(x).

This non-examinable material is developed further in Chapter 12 and 13 of Levin and
Peres book from the list of references in the course material.

2. Glauber dynamics for Gibbs distribution on independent sets. Let G = (V, E) be
a graph with maximum degree ∆, Ω be the set of independent sets on G, and x ∈ {0, 1}V

a binary encoding of the vertices composing a given independent set. Let π(x) the Gibbs
distribution on independent set, reads defined by

π(x) =

{
λ|x|

Z(λ) if x(v)x(w) = 0 ∀{v,w} ∈ E

0 Otherwise.
(1)

where |x| is the Hamming weight of configuration x, i.e., |x| =
∑

v∈V x(v) and Z(λ) =
∑

x∈χ λ
|x|

normalizes π.

The Glauber dynamics updates configuration Xt to a new configuration Xt+1 by first selecting
a vertex v ∈ V uniformly at random and then implementing an update.
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(a) Using the general definition of a Glauber dynamic update, show that we obtain the
following update. First, set Xt+1(w) = Xt(w) ∀w ̸= v. Then, if exist w ′ ∈ N(v), where
N(v) is the neighborhood of v, such that Xt(w

′) = 1.

• we set (M1) 1 Xt+1(v) = 0

• otherwise (M2)

Xt+1(v) =

{
1 with probability λ/(1+ λ),

0 with probability 1/(1+ λ).
(2)

[20 marks]
Solution The Glauber update starts selecting a vertex v ∈ V. For x ∈ Ω and v ∈ V

we define the set of independent set agreeing with x everywhere except possibly at v

Ω(x, v) = {y ∈ Ω : y(w) = x(w) ∀w ̸= v},

and π(Ω(x, y)) =
∑

y∈Ω(x,v) π(y). Then the transition probability reads:

p(x, y) = π(y|Ω(x, v))

{
π(y)

π(Ω(x,v)) if y ∈ Ω(x, v),

0 if y /∈ Ω(x, v).
(3)

Because the update can only happen in v, we have trivially Xt+1(w) = Xt(v) ∀ v ̸= w.
Because the update only affect vertex v if there is at least a neighbor of v, i.e., w ′ ∈ N(v)
in state x that is 1, then y(v) can only be 0, which implies the move M1. In the case
where there are no neighbors to v belonging to the independent set y(v) can take two
valid values 0 and 1. Let’s call it associated configurations y0 and y1 respectively, we
then have:

Ω(x, v) =
λ|x|

Z(λ)
+

λ|x|+1

Z(λ)
,

where the |x| + 1 result from the update having one more element in the independent
set. Finally this leads to

p(x, y0) =
λ|x|/Z(λ)

λ|x|/Z(λ) + λλ|x|/Z(λ)
=

1

1+ λ

and

p(x, y1) =
λλ|x|/Z(λ)

λ|x|/Z(λ) + λλ|x|/Z(λ)
=

λ

1+ λ
,

which is the update rule of move M2.

(b) Show that the Markov chain associated with this Glauber dynamics is irreducible.

Solution:

(c) Show that the Markov chain associated with this Glauber dynamics is aperiodic.

Solution:

1Remark that the labeling (M1) and (M2) is used to facilitate the discussion of the solution.
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(d) Show that the Markov chain given this the Glauber dynamics and the distribution π

above satisfy the detail balance condition (π(x)P(x, y) = π(y)P(y, x)).

Solution: Because each vertex has only two possible configurations, i.e., 0 or 1, and for
a transition to have non-zero probability, x and y can only differ in one vertex, i.e., we
have |x| = |y| ± 1. Let’s assume, without lost of generality that |x| = |y| − 1, i.e., y is
larger by one unit. We can then shown that if x ̸= y, the transition from x to y involves
selecting vertex v uniformly at random followed by adding vertex v to the IS x, leading
to

π(x)P(x, y) = π(x)
1

|V |
p(x, y) =

1

|V |

λ|x|

Z(λ)

λ

1+ λ
=

1

|V |

λ|x|+1

Z(λ)

1

1+ λ
= π(y)

1

|V |
p(y, x) = π(y)P(y, x),

which is the same as selecting vertex v uniformly at random followed removing vertex v

from the IS y that leads to x.

3. Metropolis and Glauber for q-coloring. Fix a set of colors {1, 2, ..., q}. A proper
q−coloring of a graph G = (V, E) is an assignment of colors to vertices V, subject to the
constraint that neighboring vertices do not receive the same color.

(a) Build a Metropolis algorithm that only allows transitions between coloring differing at
a single vertex and that has as stationary distribution the uniform distribution over the
set of q-colorings of G.

Solution An obvious choice of Metropolis algorithm consist on first choosing uniformly
at random a vertex v and secondly chose also uniformly at random a color c among the
all q colors. The Metropolis rule implies that Xt is updated to the new coloring if the
proposed color generates a proper coloring of G, otherwise we reject.

(b) Build a Glauber dynamics that only allows transition between coloring differing at a
single vertex and that has as stationary distribution the uniform distribution over the
set of q-colorings of G.

Solution A Glauber dynamics will also choose a uniformly at random a vertex v. Now
we will choose at random one color among the allowed colors at vertex v, which can be
easily obtain by inspection of the adjacent vertices. Note that transition are permitted
only among coloring’s differing at a single vertex. If states x and y agree everywhere
except in v, the the chance of moving from x to y equals 1/(|V ||Av(y)|), where Av(x)
is the set of allowed colors at v in state x. Since Av(x) = Av(y), as they share same
neighbors, the probabilities of moving from x to y match the one from y to x and
using detailed balance we can prove that the stationary distribution is the uniform
distribution. Remaek that irreversibility and aperiodicity are easily proven following the
same argument as in Problem 1.

(c) Discuss the differences between the Metropolis and Glauber dynamics for this specific
q−coloring problem.

Solution We observe that the Metropolis algorithm and Glauber dynamics are slightly
different, for example the probability of remaining in the same coloring differs for the two
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MC. If there are a allowable color at vertex v selected for updating, Glauber dynamics
gives a probability of 1/a of remaining, where Metropolis gives (1 + q − a)/q, which is
equal only if q = a.

Raul Garcia-Patron Sanchez
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