
Randomness and Computation 2023
Tutorial 8 (week 10)

Solution

1. Gibbs sampling for the Ferromagnetic Ising model. A spin system is a probability
distribution on X = {−1,+1}V , where V vertices of graph G = (V, E). The value γ(v) is
called the spin of v. The Ising model is used by physicist as a classical approximation to
model magnetic properties of materials. The interpretation is that magnets have up or down
orientation, encoded by the +1 and −1, and are placed in the vertices of the graph, where
the edges will encode the interaction between magnets. The nearest-neighbor ferromagnetic
Ising model is one of the most widely studied spin system. The energy of a configuration γ

is defined to be
H(γ) = −

∑
v,w∈V
v∼w

σ(v)σ(w), (1)

where the energy increases with the number of pairs of neighbors whose spin disagree. The
Gibbs distribution corresponding to energy H is the probability distribution µ on X defined
by

µ(σ) =
1

Z(β)
e−βH(σ),

where β ≥ 0 is a parameter related to the inverse temperature and Z(β) =
∑

σ∈X e−βH(σ) is
a normalization term called partition function, that plays an important role in the physical
description of the system.

(a) Show that for β = 0 the distribution µ is nothing else than the uniform distribution over
all spin configurations.

(b) Show that for β = ∞, µ is the uniform distribution over the set of configuration σ that
minimize H(σ), i.e., with probability 1/2 all spins aligned to +1 and with probability
1/2 all spins aligned to −1.

(c) Show that the transition probability of the Glauber dynamics selecting uniformly at
random a vertex w from V reads:

P(σt, σ
±1w
t+1 ) = (1+ σt+1(w) tanh(βS(σt, w))/2, (2)

where S(σ,w) =
∑

u:u∼w σ(u), σt is the initial spin configuration and σ±1w
t+1 is the updated

configuration with σ±1w
t+1 (x) = σt(x)∀x ̸= w and σ+1w

t+1 (w) = +1 or σ−1w
t+1 (w) = −1.

(d) Prove that the corresponding Markov chain is irreducible and aperiodic.

(e) Show it satisfies detailed balance.

Solution

(a) It is easy to see that for β = 0 we have e−βH(σ) = 1 and Z(β) = |X | = 2n, leading to the
uniform distribution over the spin configurations µ(σ) = 1/2n.
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(b) It is easy to see that the two solutions σ+ of all spins +1 and σ− of all spins −1 minimize
the energy H(σ±) = −|E|. One can then re-write µ(σ) as:

µ(σ) =
e−βH(σ)

2eβ|E| +
∑

σ∈X\{σ±} e
−βH(σ)

=
e−β(H(σ)+|E|)

2+
∑

σ∈X\{σ±} e
−β(H(σ)+|E|)

(3)

which for β = ∞ has value 1/2 for σ± (as H(σ±) + |E| = 0) and 0 for the other spin
configurations (as H(σ)+ |E| > 0 for σ ̸= σ±). This case correspond the zero temperature
Gibbs distribution that is the mixture of the states that minimize the energy of the
system.

(c) Taking into consideration that the two update spin configurations only differ on vertex
w we can write:

H(σ) = H(σ)V\w − σ(w)
∑

x∈V :x∼w
σ(u) = HV\w − σ(w)S(σ,w). (4)

where HV\w is the term of the energy that does has no dependency on the vertex w. we
can then write,

P(σt, σ
±1
t+1) =

e−βHV\veβσ(v)S(σ,v)

e−βHV\veβS(σ,v) + e−βHV\ve−βS(σ,v)
, (5)

which can be simplified to

P(σt, σ
±1w
t+1 ) =

eβσ(v)S(σ,v)

eβS(σ,v) + e−βS(σ,v)
, (6)

and using the relation

1± tanh x = 1± ex − e−x

ex + e−x
=

2e±x

ex + e−x
(7)

leads to
P(σt, σ

±1w
t+1 ) = (1+ σ(v) tanh(βS(σ, v))/2. (8)

(d) The argument for irreversibility is similar to the ones done before. Basically any spin
configuration can reach any other via a one spin change at a time, where each transition
has at least a non-zero probability for finite β and therefore the full path connecting two
configurations has always a non-zero probability. Aperiodicity is obtained by having a
non-zero probability of remaining in the initial state.

(e) Taking into consideration that spin configuration x and y only differ on vertex w we can
write:

π(x) =
1

Z(β)
e−βHV\weσx(w)S(σx,w), (9)

and

π(y) =
1

Z(β)
e−βHV\weσy(w)S(σy,w), (10)
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where we have the relation S(σx, w) = S(σy, w) as the configuration are equal outside
w. We can therefore write:

π(x)Px,y =
1

Z
eHV\weβσx(w)S(σx,w) eβσy(w)S(σy,w)

eβS(σy,w) + e−βS(σy,w)
(11)

where using S(σx, w) = S(σy, w), leads to

π(x)Px,y =
1

Z
eHV\weβσy(w)S(σy,w) eβσx(w)S(σx,w)

eβS(σx,w) + e−βS(σx,w)
= π(y)Py, x (12)

2. Path coupling for the Ferromagnetic Ising model.

Let’s define the distance ρ on X by

ρ(σ, τ) =
1

2

∑
u∈V

|σ(u) − τ(u)|,

which is easy to see that quantifies how many spins are different.

We are going to follow the standard technique for proving rapid mixing presented in lecture
19 of the course, where we design a coupling consisting on applying the same update to both
chains Xt and Yt. Let’s consider σ and τ such that ρ(σ, τ) = 1, i.e., they agree everywhere
except in vertex v. Let’s define N(v) = {u : u ∼ v} to be the set of neighbors vertices of v.

(a) Explain why when the vertex w selected during the update satisfies w = v we have
ρ(Xt+1, Yt+1) = 0.

(b) Justify why when w /∈ N(v)∪ {v}, then the distance does not change, i.e., ρ(Xt+1, Yt+1) =
1.

(c) Show that the probability of ρ(Xt+1, Yt+1) = 2, when w ∈ N(v), satisfies the condition

P(ρ = 2|w ∈ N(v)) = |p(τ,w) − p(σ,w)|.

(d) Using the relation tanh(β(x+ 1)) − tanh(β(x− 1)) ≤ tanhβ prove the relation

E[ρt+1|ρt = 1] ≤ 1−
1− ∆ tanh(β)

n
= 1−

c(β)

n
≤ e−c(β)/n.

(e) Discuss under which conditions of ∆ and tanh(β) this Glauber dynamics for the Ferro-
magnetic Ising model shows rapid mixing.

Solution:

(a) Because chains Xt and Yy respective configurations γ and τ only differ on vertex v, when
the update vertex w = v the update follow by both chains is exactly the same. Therefore,
we replace the configuration of the vertex v, which was were Xt was different Yt, by the
same value on both chains. Therefore we decrease the distance between the chains to
zero, i.e., ρ(Xt+1, Yt+1) = 0.
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(b) When w /∈ N(v)∪ {v}, w and all its neighbor vertices have the same value on both chains
Xt and Yt. Therefore, the coupled Glauber dynamics will generate the same update
for w on both chains. Because σ(w) = τ(w) already, the distance neither decrease or
increase, i.e., ρ(Xt+1, Yt+1) = 1.

(c) The scenario w ∈ N(v) has two possible scenarios, if the update of w is the same value
the distance is preserved (ρ(Xt+1, Yt+1) = 1), but with some non-zero probability the
update of w can be different for both chains, with increases by one vertex the distance,
leading to ρ(Xt+1, Yt+1) = 2. By inspection of the update rule above (2), and using
U ∈ [0, 1] as the random number used to decide the update of both chains using rule
(2), it is not hard to see that:

• Scenario I: corresponds to either U ≤ min{P(σt, σ
+1w
t+1 ), P(τt, τ

+1w
t+1 )} or

max{P(σt, σ
+1w
t+1 ), P(τt, τ

+1w
t+1 )} ≤ U, where the update reads the same for both chains.

• Scenario II: corresponds to min{P(σt, σ
+1w
t+1 ), P(τt, τ

+1w
t+1 )} ≤ U ≤ max{P(σt, σ

+1w
t+1 ), P(τt, τ

+1w
t+1 )}.

Remark that the probability of Scenario II is

P(ρ = 2|w ∈ N(v)) = max{P(σt, σ
+1w
t+1 ), P(τt, τ

+1w
t+1 )}−min{P(σt, σ

+1w
t+1 ), P(τt, τ

+1w
t+1 )}

= |P(σt, σ
+1w
t+1 ) − P(τt, τ

+1w
t+1 )|.

(d) Our analysis for the coupling of two chains with distance ρ(Xt, Yt) = 1, leads to:

E[ρt+1|ρt = 1] = 1−
1

n
−

2

n

∑
w∈N(v)

|P(σt, σ
+1w
t+1 ) − P(τt, τ

+1w
t+1 )|,

where the second term on the left side of equality correspond to the probability of w = v

and the last term is the probability that we select a neighbor of v and that we end in
case II described above. Because when w ∈ N(v), all the neighbors of w have the same
spin except for v where the values are opposite, we have

|P(σt, σ
+1w
t+1 ) − P(τt, τ

+1w
t+1 )| =

1

2
(tanh(β(x+ 1)) − tanh(β(x− 1))) ,

where x =
∑

u:u∼w\{v} σ(u), is the sum of the spins of all neighbors of w except v. Using
the relation tanh(β(x+ 1)) − tanh(β(x− 1)) ≤ tanhβ, and the fact that any vertex has
at most ∆ neighbors, one can further simplify to:

E[ρt+1|ρt = 1] = 1−
1− ∆ tanh(β)

n
= 1−

c(β)

n
≤ e−c(β)/n.

(e) The previous result is equivalent to stating that for every two chains Zi and Zi+1 having
a distance of 1, we have E[d(Z ′

i+1, Z
′
i)] ≤ e−c(β)/n. Following the discussion on Lecture

19, we can construct a path of of dt chains Zi between Xt and Yt, which allows us to
write

E[dt+1|dt] =

dt∑
i=1

E[d(Z ′
i+1, Z

′
i)] ≤ e−c(β)/ndt,
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which leads to E[dt+1] = E[E[dt+1|dt]] =≤ e−c(β)/nE[dt] and by iteration to E[dT ] ≤
e−c(β)T/nd0 ≤ e−c(β)T/nn, where the condition c(β) > 0 is necessary to prove contraction
of the distance with t. This leads to

τ(ϵ) =
n

c(β)
(logn+ log(1/ϵ)) ,

where the condition c(β) > 0 is necessary to reach rapid mixing, which corresponds to
∆ tanhβ < 1.

3. Path coupling for Gibbs distribution on independent sets. Let G = (V, E) be a graph
with maximum degree ∆, Ω be the set of independent sets on G, and x ∈ {0, 1}V a binary
encoding of the vertices composing a given independent set. Let π(x) the Gibbs distribution
on independent sets:

π(x) =

{
λ|x|

Z(λ) if x(v)x(w) = 0 ∀{v,w} ∈ E

0 Otherwise.
(13)

where |x| is the Hamming weight of configuration x, i.e., |x| =
∑

v∈V x(v) and Z(λ) =
∑

x∈χ λ
|x|

normalizes π. The Glauber dynamics updates configuration Xt to a new configuration Xt+1

by first selecting a vertex v ∈ V uniformly at random and then implementing an update.
Using the general definition of a Glauber dynamic update, show that we obtain the following
update rule:

First, set Xt+1(w) = Xt(w) ∀w ̸= v. Then, if exist w ′ ∈ N(v), where N(v) is the neighbor-
hood of v, such that Xt(w

′) = 1.

• we set (M1) 1 Xt+1(v) = 0

• otherwise (M2)

Xt+1(v) =

{
1 with probability λ/(1+ λ),

0 with probability 1/(1+ λ).
(14)

(a) Let’s define two chains Xt and Yt that we will couple via the application of the exact same
update rule at each step. Let’s define the distance ρ(X, Y) between two independent sets
by the amount of vertices that are different, i.e, ρ(X, Y) =

∑
i∈V |x(i) − y(i)|. Assume

that Xt and Yt differ in a single vertex v:

i. Explain why when the vertex w selected during the update satisfies w = v we have
ρ(Xt+1, Yt+1) = 0.
Solution: If we select the vertex v where Xt and Yt differ, all neighbors are the
same in both chains, which implies the chain applies same move to both. Because
either Xt(v) = 1(Yt(v) = 0) or Yt(v) = 1(Xt(v) = 10, all its neighbors have to be
0. Therefore the MC will chose move M2. Whatever is the update, now we have
Xt(v) = Yt(v) and ρ(Xt+1, Yt+1) = 0.

1Remark that the labeling (M1) and (M2) is used to facilitate the discussion of the solution.
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ii. Justify why whenw /∈ N(v)∪{v}, then the distance does not change, i.e., ρ(Xt+1, Yt+1) =
1.
Solution: All neighbors of w /∈ N(v) ∪ {v} are equal on both chains, which lead to
the MC to implement the same update (M1 or M2 with same output) on both chains.
Because initially Xt(w) = Yt(w) and the outcome also satisfies Xt+1(w) = Yt+1(w)
we have that the distance does not change, i.e., v remains the only vertex where
they differ.

iii. Show that the probability of ρ(Xt+1, Yt+1) = 2, when w ∈ N(v), is always no larger
than λ/(1+ λ).
Solution: If the selected vertex w is a neighbor of v. Assume without lost of
generality that Xt(v) = 1(Yt(v) = 0). What may happen is that the MC implements
move M1 to Xt and M2 to Yt potentially leading to Yt+1(w) = 1 ̸= Xt+1(w). Because
the two chain were differing on v already, now ρ(Xt+1, Yt+1) = 2. This can only
happen if all neighbors of w in Yt are 0 and the move M2 select output 1 for w,
which has total probability ≤ λ/(1+ λ). An equivalent argument works for the case
Xt(v) = 0(Yt(v) = 1), exchanging the roles of X and Y.

(b) For which condition between the parameter λ and maximum degree of the graph ∆ we
have E(ρ(Xt+1, Yt+1)) ≤ 1− c(λ)/n ≤ e−c(λ)/n with c(λ) > 0 when ρ(Xt, Yt) = 1?

Solution From the derivation above we can show that

ρ(Xt+1, Yt+1) ≤ 1−
1

n
+

∆

n

λ

1+ λ
,

where the negative term corresponds to the probability of selecting vertex v where both
are different and the last term correspond to the case of selecting a neighbor of v (prob-
ability ≤ ∆

n ) followed by a potential update to 1 on one chain and not the other. This
can be simplified to

ρ(Xt+1, Yt+1) ≤ 1−
1

n

1− λ(∆− 1)

1+ λ
.

If λ < (∆− 1)−1 then we have

E[ρ(Xt+1, Yt+1)] ≤ 1−
c(λ)

n
≤ e−c(λ)/n,

with c(λ) = 1− λ(∆− 1).

(c) Prove that the mixing time will satisfy tmix(ϵ) ≤ n
c(λ)(logn+ log ϵ−1).

Solution If we have now ρ(Xt+1, Yt+1) = dt we can always construct a path of dt chains
Zi, where Z1 = Xt and Zdt = Yt, such that ρ(Zi, Zi+1) = 1. Coupling all chain to the
same MC we obtain

E[dt+1|dt] = E[ρ(Xt+1, Yt+1)] = E[

dt∑
i=1

ρ(Zi, Zi+1)] =

dt∑
i=1

E[ρ(Zi, Zi+1)] ≤ dte
−c(λ)/n.

Using the conditional expectation equality we can then obtain

E[dt+1|dt] = E[E[dt+1|dt]] = E[dt]e
−c(λ)/n,
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which by induction leads to

E[dt+1] ≤ d0e
−c(λ)t/n ≤ ne−c(λ)t/n.

The coupling lemma states that if we can prove Pr(XT ̸= YT |X0 = x, Y0 = y) ≤ ϵ then
the mixing time satisfies τ(ϵ) ≤ T .

Because Xt = Yt if and only if dt = 0, we have

Pr(XT ̸= YT |X0 = x, Y0 = y) = Pr(dt ≥ 1|X0 = x, Y0 = y) ≤ E[dt|X0 = x, Y0 = y] ≤ ne−c(λ)t/n.

By choosing

T =
n

c(λ)
(log(n/ϵ))

we ensure Pr(XT ̸= YT ) ≤ ϵ and therefore the mixing of the chain.

Raul Garcia-Patron Sanchez
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