
Randomized Algorithms
Solution for Tutorial Sheet 1

A randomized algorithm for deciding whether two positive integers, represented
succinctly by arithmetic circuits, are equal or not.

Recall, we are asked to devise a randomized algorithm that, given as input two arithmetic
circuits C1 and C2, of sizes n1 and n2, has the following properties:

(a.) The algorithm runs in time polynomial in the input size n = n1 + n2.

(b.) If val(C1) = val(C2), then the algorithm always returns “YES”.

(c.) If val(C1) 6= val(C2), then the algorithm returns “NO” with probability at least 1/2.

(Actually, even better, with probability at least (1− 1
2n

).)

We need to describe our algorithm and prove it has the above properties. We are allowed
to use the number-theoretic facts stated in the tutorial sheet without proof.

The algorithm we will devise is very simple.
This algorithm and the proof that it works are due to Arnold Schönhage ([4], 1979).
For any positive integer m, let [m] = {1, . . . ,m}.
We are given circuit C1 consisting of gates g0, . . . , gn1 , and circuit C2 consisting of gates

g′0, . . . , g
′
n2

, and hence where C1 and C2 have sizes n1 and n2, respectively. Let n = n1 + n2.
We can assume without loss of generality that n = n1 + n2 ≥ 7, because otherwise, if n ≤ 6,
we can easily (deterministically) compute the values val(C1) and val(C2) by evaluating both
circuits in constant time, and then check whether or not val(C1) is equal to val(C2).

Our randomized algorithm, parametrized by a positive integer k (which is the number of
repetitions we will use to amplify the success probability to a “sufficiently high” level, to be
determined later), is as follows:

Algorithm Equal-Integers(C1, C2, k)

1. for j = 1, . . . , k do

2. Generate a fresh random number Nj ∈ [22n] = {1, 2, . . . , 22n}, uniformly at random;

3. Calculate both val(C1) (mod Nj) and val(C2) (mod Nj);

4. if val(C1) (mod Nj) 6= val(C2) (mod Nj)

5. return “NO”;

6. return “YES”;

Let us now explain how and why this algorithm works:
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Step 2: Choosing a number, N ∈ [22n], uniformly at random can be done easily, by flipping
a fair coin 2n times, to generate 2n independent random “bits” of the binary representation
of a random number B ∈ {0, . . . , 22n − 1}. We then add 1 to B, to obtain N = B + 1 ∈
{1, . . . , 22n}. Clearly, each of the 22n possible distinct values in [22n] = {1, . . . , 22n} has equal
probability 1/22n of being generated.

Step 3: To evaluate val(C1) (mod N) and val(C2) (mod N), we can inductively evaluate
each gate of C1 and C2, starting from the trivial base case of gates g0 and g′0, where val(g0)
(mod N) = val(g′0) (mod N) = 1 (mod N). Inductively, we calculate val(gi) (mod N), for
i = 1, . . . , n1, and val(g′i) (mod N), for i = 1, . . . , n2, using modular arithmetic, and the fact
(described on the tutorial sheet), that the congruence relation ≡ (mod N) is “compatible”
with integer addition and multiplication. So, for example, if gi := gji ∗ gki , then

val(gi) (mod N) = ((val(gji) (mod N)) ∗ (val(gki) (mod N))) (mod N).

Here, the value on both sides of the equality should be understood as the unique value in
{0, . . . , N − 1} congruent modulo N to that value. Likewise if gi := gji + gki .

Note that since the number of bits required to represent any of the intermediate calculated
values val(gi) (mod N) is at most 2n bits, and since integer {+, ∗} arithmetic instructions
on 2n bit integers can easily be carried out in time polynomial in n, the entire computation
of val(C1) (mod N) and val(C2) (mod N) can be carried out in time polynomial in the
size n of the input.
Total Running time: Since each iteration of the for loop can be carried out in time q(n), for
some polynomial q(·), the entire algorithm can be carried out in time k · q(n). We will later
choose k itself to be a suitable polynomial in n, which will ensure that our success probability
is “high enough”. Hence, under such a choice of k, we will have established property (a.)
holds for the algorithm.

We next have to show the correctness of the algorithm, by showing that properties (b.)
and (c.) hold.
Property (b.): If val(C1) = val(C2), then clearly for any positive integer N , val(C1)
(mod N) = val(C2) (mod N), and hence the algorithm will always return “YES”.
Property (c.): This is the heart of the proof of correctness for this algorithm. We will exploit
the (number-theoretic) facts described on the tutorial sheet.

The following lemma is the key:

Lemma 1 Suppose val(C1) 6= val(C2). Then

|{N ∈ [22n] | val(C1) (mod N) 6= val(C2) (mod N)}| ≥ 22n

12 · n
.
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Proof.
Note firstly that val(C1) (mod N) = val(C2) (mod N), or equivalently val(C1) ≡

val(C2) (mod N), holds if and only if N |(|val(C1)− val(C2)|).
Now note that since size(C1) ≤ n and size(C2) ≤ n, using Fact (4.) stated on the

tutorial sheet we know that 1 ≤ val(C1) ≤ 22n and 1 ≤ val(C2) ≤ 22n . Hence |val(C1) −
val(C2)| ≤ 22n .

Next, using fact (3.) stated on the tutorial sheet, and the fact that |val(C1)−val(C2)| ≤
22n , we know that there are at most 2n distinct prime numbers that divide |val(C1) −
val(C2)|.

Hence, the number of prime numbers in [22n] that do NOT divide |val(C1)− val(C2)| is
at least:

π(22n)− 2n ≥ 22n

3 · ln(22n)
− 2n (using Fact (2.) on the tutorial sheet),

≥ 22n

3 · 2 · n
− 2n (because 2n = log2(2

2n) ≥ ln(22n))

= 22n(
1

3 · 2 · n
− 1

2n
)

≥ 22n(
1

2 · 3 · 2 · n
) (because we assumed, w.l.o.g., n ≥ 7, and hence 2n ≥ (2 · 3 · 2 · n))

=
22n

12 · n
.

�

It follows immediately from Lemma 1 that if val(C1) 6= val(C2), then the probability
that val(C1) (mod N) 6= val(C2) (mod N) for a number N ∈ [22n] chosen uniformly at
random is at least 1

12n
. Hence the probability that val(C1) (mod N) = val(C2) (mod N)

is at most (1− 1
12n

).
Now, to suitably amplify the success probability, let us fix the number of iterations of

the for-loop in our algorithm to be k := 12n2.
Now, assuming that val(C1) 6= val(C2), let Aj denote the event that the j′th iteration

of the for loop fails, meaning that val(C1) (mod Nj) = val(C2) (mod Nj).
Then the probability that the algorithm fails, meaning the probability that all k inde-
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pendent iterations fail, is

Pr(
k⋂

j=1

Aj) =
k∏

j=1

Pr(Aj) (by mutual independence of events Aj, for j = 1, . . . , k)

≤ (1− 1

12n
)k = (1− 1

12n
)12n

2

(because Pr(Aj) ≤ (1− 1
12n

), for all j ∈ [k])

= ((1− 1

12n
)12n)n

≤ (
1

e
)n (because by fact (5.) on the Tutorial sheet, 1

e
≥ (1− 1

m
)m for all m ≥ 1)

Hence, the probability that the algorithm succeeds is at least (1− 1
en

) > (1− 1
2n

).
This completes our proof that the algorithm satisfies property (c.), in the strong form.
Hence, we have established correctness of the algorithm, and furthermore since the num-

ber of iterations of the algorithm is k := 12n2, note that it follows that property (a.) also
holds, meaning the algorithm always runs in time polynomial (namely, 12n2 · q(n)) in the
size n of the input.

Food for thought question: can you devise a deterministic polynomial time algorithm
for the same decision problem?

As mentioned in the hint on the tutorial sheet, you would immediately become famous
if you could do so. This is because, as shown by Allender et.al. in [1], the problem of
deciding whether two such arithmetic circuits describe equal numbers, known as EquSLP,
is in fact equivalent to a famous open problem, namely whether the very general form of
the Polynomial Identity Testing (PIT) problem, known as ACIT is decidable in deterministic
polynomial time.

ACIT and hence EquSLP are pivotal problems for understanding the relative power of
randomized polynomial time versus determinstic polynomial time, and have been studied
for decades because of this. The ACIT problem is known to be decidable in co-RP, meaning
that there is a randomized polynomial time monte carlo algorithm with one-sided error for
the problem (where, if two given succinctly represented polynomials are equal, the answer
the algorithms gives is always the correct answer “Yes”, whereas if the polynomials are not
equal, then the answer has small positive probability of being incorrect).

However, even deciding whether the ACIT or EquSLP problem is in NP is open. Moreover,
there is a result by Kabanets and Impagliazzo ([3]) which means, roughly speaking, that
an efficient deterministic algorithm for ACIT, or even just showing that ACIT is in NP
(!!), would resolve some very long-standing open problems about “lower bounds” either
for boolean or arithmetic circuits, and would hence constitute a major breakthrough in
complexity theory. (If you are very interested to learn more about complexity-theoretic
aspects of these problems, you may also wish to read Chapter 6 and Chapter 20 (particularly
section 20.4) of the textbook [2] by Arora and Barak on Computational Complexity. This
book is available digitally for free through the University Library.)
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Despite these very serious difficulties, it is also true that many complexity theory re-
searchers (myself included) believe that it will eventually (perhaps many years from now)
be shown that ACIT (and hence equivalently EquSLP) does have a deterministic polynomial
time algorithm. So, you still have a wide open opportunity to become famous!

Kousha Etessami
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