
Randomized Algorithms 2023
Solutions to Tutorial Sheet 4

1. (a) Our aim is to give a (Las Vegas) randomized algorithm that runs in expected polynomial
time and that outputs an assignment that satisfies at least m(1− 2−k) of the m clauses
in the given k-CNF formula, where every clause has exactly k literals.

Our algorithm simply chooses uniformly at random an assignment to the variables, and
repeats this until it finds an assignment that satisfies at least m(1− 2−k) of the clauses.

Let Xi, i = 1, . . . ,m denote an indicator random variable, whose value is Xi = 1 if the
i’the clause is satisfied by a random assigmnent, and Xi = 0 otherwise. Let X =

∑m
i=1 Xi

denote a random variable representing the total number of clauses that are satisfied by
a u.a.r. random assignment.

Note that E[Xi] = (1−2−k) is the probability that the i’the clause is satisfied, because for
each clause there is only one assignment to its k variables (out of 2k such assignments)
that doesn’t satisfy that clause. is satisfied by every possible assignment to its variables
except one. Hence that the expected number of clauses that are satisfied, by linearity of
expectation, is:

E[X] =
∑m
i=1 E[Xi] = m(1− 2−k).

However, this does not yet imply a good bound on the expected number of times we
would have to choose a random assignment before one of them satisfies at leastm(1−2−k)
of the clauses.

To establish this, let us first recall that Markov’s inequality tells us that for any non-
negative random variable Z, and any a ≥ 1, Pr[Z ≥ aE[Z]] ≤ 1

a .

Now, in order for us to appy Markov’s inequality to our problem, consider the random
variable Y = m − X, which counts the total number of clauses that are not satisfied by
a random assignment. Note that Y is a non-negative random variable, and note that an
easy (symmetric) argument shows that E[Y] = m2−k.

Now, Let a = 1 + 1
m+1 . By Markov’s inequality, it follows that Pr[Y > aE[Y]] = Pr[Y >

E[Y] + 1
m+1E[Y]] = Pr[Y > m2−k + m

m+12
−k] ≤ 1

a = m+1
m+2 .

However, now observe that Y is actually an integer random variable, and hence since
E[Y] = m2−k, and since m

m+12
−k is strictly less than a multiple of 2−k, we must have

dm2−ke = dm2−k + m
m+12

−ke. Hence, we have that Pr[Y > E[Y]] ≤ m+1
m+2 . Hence, we have

that Pr[m − Y < m − E[Y]] ≤ m+1
m+2 . Hence, since X = m − Y, and since by linearity

E[X] = m− E[Y], we have that Pr[X < E[X]] ≤ m+1
m+2 .

Hence Pr[X ≥ E[X]] ≥ 1
m+2 . But this means that for each u.a.r. random assignment, the

probability that it satisfies at least E[X] = m(1−2−k) clauses is at least 1
m+2 . Hence, the

expected number of random trials we would need before a random assignment succeeds
in satisfying m(1 − 2−k) clauses behaves like a geometric random variable with success
probability p = 1

m+2 in each trial. As we know, the expectation of such a geometric

random variable is 1
p = m+ 2.

1

Hence, the expected number of random assigments we would have to try before we find
one that satisfies at least m(1− 2−k) clauses is m+ 2.

This therefore yields a randomized (Las Vegas) algorithm for computing such an as-
sigment, whose expected running time is polynomial in the encoding size of the input
k-CNF formula, because we need, in expectation m+2 assignments, and each assigment
requires sample n u.a.r. random bits (truth assigments), for the n boolean variables of
the k-CNF formula.

(b) Derandomizing this algorithm using the method of conditional expectations follows a
very similar approach as we took in lectures for derandomizing the algorithm for com-
puting a cut in a graph that cuts at least 1/2 the edges.

Specifically, suppose we are given a k-CNF formula ϕ, with m clauses, over n boolean
variables x1, . . . , xn.

We will sequentially assign truth values to x1, then x2, then x3, and so on, such that in
each stage we will make sure that we are not decreasing the conditional expectation of
the number clauses that are satisfied by assignment to the remaing variables.

Let Xϕ be the random variable that denotes the expected number of clauses in ϕ that
are satisfied by a u.a.r. random assigment to all variables.

Let us consider the conditional expectation of Xϕ, conditioned on a particular truth
assignment, b ∈ {0, 1}, to variable x1. E[Xϕ | x1 = b] denote this conditional expectation.

However, let ϕb denote the new CNF formula obtained from ϕ by assigning the truth
value x1 = b, to all occurences of the variable x1 in ϕ. This can make some clauses true,
namely those where x1 appears with the same sign as b, and it can reduce the size of some
other clauses where x1 appears but with a different sign than b. Hence ϕb is really just
a different “reduced” CNF formula. Moreover, it is clear that E[Xϕ | x1 = b] = E[Xϕb

].

Note that we can easily calculate E[Xϕb
], for each b ∈ {0, 1}, because for each clause in

ϕb (where each clause may contain k or fewer literals), we can calculate the probability
that a u.a.r. random assignment satisfies that clause, and using linearity of expectation
we can sum all of these probabilities to obtain the expected number of clauses of ϕb
that are satisfied by a u.a.r random assigment.

Now, clearly, E[Xϕ] =
E[Xϕ1

]

2 + E[ϕ0]
2

Thus, one of E[Xϕ1
] and E[Xϕ0

] must be at least as large as E[Xϕ].

We can hence choose the truth value of x1 to be the truth value that yields the larger of
these two conditional expectations, i.e., x1 = arg maxb E[Xϕb

].

Having chosen the value of x1 this way, let us suppose that value is b1. We can next
continue to assign a truth value b2 ∈ {0, 1} to x2, so as to maximize E[Xϕb1

| x2 = b2].
But again, fixing the value of x2 to b2 yields a new CNF formula ϕb1,b2 , which is a
“subformula” of ϕb1 , and clearly E[Xϕb1

| x2 = b2] = E[Xϕb1,b2
]. Again, we can easily

calculate E[Xϕb1,b2
], so we can fine which value of b2 maximizes this.

In this way, we can continue to assign values b1, b2, b3, . . ., sequentially to each variable
x1, x2, x3, . . ., in each case making sure that the conditional expectation of the number
of clauses that are satisfied is not decreased.

2

At the end this results in an assigment (b1, . . . , bn) to all n variables which must therefore
satisfy at least E[Xϕ] = m(1− 2−k) clauses.

2. (a) To see that S(σ) must be an independent set, note that if i, j ∈ S(σ) then both vertex i
and vertex j appear in the permutation σ before any of their neighbors. But this means
that i and j themselves cannot be neighbors of each other, because one of them appears
after the other in σ.

(b) One possible randomized algorithm to generate a permutation σ u.a.r. would be to
first choose the first entry i1 in the permutation, u.a.r., from the entire set {1, . . . , n} of
vertices. Next, we choose the next element i2 u.a.r. from the remaining set {1, . . . , n}\{i1},
and so on, until we have generated the entire permutation i1, i2, i3, . . . , in.

(This is not the most efficient way to generate such a permutation u.a.r., but it is efficient
enough for our purposes, and in particular it requires at most a polynomial number of
coin flips as a function of n.)

Now we show that the expected size of S(σ) is
∑n
i=1

1
di+1

. To do this, let us define an
indicator random variable Xi for each node i ∈ {1, . . . , n}, where Xi = 1 if node i appears
in the random permutation σ prior to any of its neigbors in the graph G, and otherwise
Xi = 0.

Note that X =
∑n
i=1 Xi is a random variable denoting the total number of nodes that

appear before all their neighbors in a u.a.r. random permutation σ. In other words
X = |S(σ)|.

Note, crucially, that the probability that node i appears in a u.a.r. random permutation
σ prior to any of its di neighbors is precisely 1

di+1
.

Hence E[Xi] =
1

di+1
. Hence, by linearity of expectation E[X] =

∑n
i=1

1
di+1

.

(c) We have established that E[X] =
∑n
i=1

1
di+1

.

Hence, we can simply apply the probabilistic method to conclude that there must exist
an independent set of this size. This is because we know, for any random variable X
with finite expectation that Pr[X ≥ E[X]] > 0 (see slides for lecture 11, or Lemma 6.2 in
the textbook).

3. (a) This observation follows easily because:

e · p(d+ 1) ≤ 4dp ⇔ e(d+ 1) ≤ 4d

⇔ e

4
≤ d

d+ 1⇔ d ≥ 3 (because d is an integer)

Hence, for any d ≥ 3, e · p(d + 1) ≤ 4dp. Hence the condition e · p(d + 1) ≤ 1 is less
stringent than the condition 4dp ≤ 1.

3

(b) Now let xi =
1
d+1 , for all i = 1, . . . , n. Observe that the general Lovasz Local Lemma

(Theorem 6.17 in the textbook) then implies that, under the condition that for all i,
Pr[Ei] ≤ 1

d+1

∏
(i,j)∈E(1−

1
d+1), we have

Pr(

n⋂
i=1

Ei) ≥
n∏
i=1

(1−
1

d+ 1
) > 0. (1)

But note that
∏

(i,j)∈E(1−
1
d+1) ≥ (1− 1

d+1)
d ≥ 1

e .

Hence, in order to conclude (1), it suffices to assume that Pr[Ei] ≤ 1
e(d+1) for all i. In

other words, it suffices to assume Pr[Ei] ≤ p, for all i, where p ≤ 1
e(d+1) , or equivalently

where ep(d+ 1) ≤ 1.

4

