
Randomized Algorithms 2023
Tutorial Sheet 1 (week 3)

A randomized algorithm for deciding whether two positive integers, represented
succinctly by arithmetic circuits, are equal or not.

If we are given two positive integers written in binary, then it is obviously very easy for
us to decide whether the two integers are equal or not.

However, if instead we are given two positive integers represented succinctly, using arith-
metic circuits, deciding whether they are equal or not is a much more challenging task. In
this tutorial you will be asks to devise a randomize polynomial time algorithm for this task
and, importantly, to prove its correctness.

An arithmetic circuit, or equivalently a straight-line program, C, with m arithmetic gates,
restricted to addition or multiplication gates only, and using only the input value 1, is defined
by a sequence of arithmetic instructions of the following form:

g0 := 1;

g1 := gj1 �1 gk1 ;

. . .

gi := gji �i gki ;
. . .

gm := gjm �m gkm ;

where, for all i ∈ {1, . . . ,m}, �i ∈ {+, ∗}, and both ji ∈ {0, . . . , i−1} and ki ∈ {0, . . . , i−1}.
We define the “size”, size(C), of such a circuit C to simply be its number of gates m.

Note that we can encode a circuit that has m gates using O(m logm) bits. Hence, as far as
polynomial time algorithms are concerned, it is inconsequential whether we measure the size
of an input arithmetic circuit by its number of gates or by its bit encoding length.

Each gate gi of such an arithmetic circuit “computes” a unique postive integer, val(gi),
in the natural way. We can define val(gi) by induction on i: for i = 0, val(g0) := 1, and
inductively, for i > 0, val(gi) := val(gji)�i val(gki).

We define the value, val(C), of such a circuit C with m gates to simply be the value of
its last gate, in other words, val(C) := val(gm).

Notice that with an arithmetic circuit C of size(C) = n we can define double-exponentially
large numbers using repeated squaring. Specifically, consider the following circuit C ′ given
by:

1



g0 := 1;

g1 := g0 + g0;

g2 := g1 ∗ g1;
g3 := g2 ∗ g2;

. . .

gn := gn−1 ∗ gn−1;

By an easy induction, for all i ≥ 1, we have val(gi) = 22i−1
. Hence val(C ′) = 22n−1

, even
though size(C ′) = n. Notice that even just to write down the value 22n−1

in binary would
require exponential space (2n−1 bits) as a function of the input circuit’s size, n. Hence, it is
not at all obvious how to “evaluate” an arbitrary arithmetic circuit in polynomial time.

Suppose we are given two arithmetic circuits, C1 and C2, where size(C1) = n1 and
size(C2) = n2, and suppose we want to decide whether val(C1) = val(C2).

Can we solve this decision problem efficiently (in polynomial time)? We can if we allow
ourselves to use randomness.

This tutorial asks you to devise a randomized algorithm that, given as input two arith-
metic circuits C1 and C2, of sizes n1 and n2, has the following properties:

(a.) The algorithm runs in time polynomial in the input size n = n1 + n2.

(b.) If val(C1) = val(C2), then the algorithm always returns “YES”.

(c.) If val(C1) 6= val(C2), then the algorithm returns “NO” with probability at least 1/2.

(You are then asked to show that, using a standard repetition argument, if val(C1) 6=
val(C2) we can amplify the probability that the algorithm returns “NO” to (1− 1

2n
),

while also maintaining both properties (a.) and (b.).)

In order to help you devise such an algorithm, we will provide the following “hints” as
mathematical facts that you are allowed to use without proof. Proofs of the first three facts
can be found in any good number theory textbook. For example, the following very nice
book:
Victor Shoup, A Computational Introduction to Number Theory and Algebra, 2nd Edition,
Cambridge University Press, 2008.
The fourth fact is about arithmetic circuits, and it is not hard to prove by induction on the
size of the circuit. The last fact is a simple and well-known inequality relating to e, the base
of the natural logarithm.

2



1. Let us briefly recall congruences and modular arithmetic. For integers a, b ∈ Z, and a
positive integer N ≥ 1, we say that a is congruent to b modulo N , and we write

a ≡ b (mod N)

if N divides a − b, denoted N | (a − b), or in other words if there exists an integer c
such that a− b = c ·N .

If N 6 | (a− b), then we write a 6≡ b (mod N).

Here are some useful facts about modular arithmetic:

For any fixed modulus N , the congruence relation ≡ (mod N) defines an equivalence
relation on integers (i.e., a reflexive, symmetric, and transitive binary relation on inte-
gers). Furthermore, the congruence is “compatible” with integer addition and multi-
plication, meaning that, if a ≡ a′ (mod N) and b ≡ b′ (mod N), then (a+b) ≡ (a′+b′)
(mod N), and (a · b) ≡ (a′ · b′) (mod N).

2. For a positive integer x ≥ 1, let π(x) denote the total number of distinct prime numbers
up to (and including) x.

For example, π(1) = 0, π(3) = 2 , and π(9) = 4.

Let ln(x) denote the natural logarithm of the number x > 0. A fundamental theorem
in number theory, the prime number theorem, states that π(x) ∼ x

lnx
. In other words,

limx→∞
π(x)
x/lnx

= 1. Rather than dealing with limits, we will be content to quote the

following much easier to prove quantitative fact (one part of Chebyshev’s theorem on
the density of primes):

Theorem: For any positive integer x ≥ 2, π(x) ≥ 1
3
· x
lnx

.

3. Let us make a trivial number-theoretic observation:

Let
∏k

i=1 pi denote the product of the first k distinct prime numbers, p1 = 2, p2 =

3, p3 = 5, . . . , pk. Then clearly
∏k

i=1 pi ≥ 2k. For the same reason, the product of any
k distinct prime numbers must be ≥ 2k.

4. Let us state the following simple fact about arithmetic circuits. For any arithmetic
circuit C of size n, val(C) ≤ 22n−1

. In other words, the largest integer that can be
computed by an arithmetic circuit of size n is 22n−1

. (This is fairly easy to prove.)

5. Finally, let us state a basic inequality. Let e be the base of the natural logarithm.
Then 1

e
≥ (1− 1

m
)m, for all m ≥ 1.

Using the above facts (none of which you need to prove), devise a randomized algorithm,
i.e., an algorithm that is able to flip fair (independent) coins, for deciding whether two

3



integers given succinctly by two arithmetic circuits are equal or not, and prove that your
algorithm has properties (a.), (b.), and (c.).

Hints:

• Consider choosing, uniformly at random, a “large enough” (but not “too large”) ran-
dom integer N ≥ 1, and computing the value of both arithmetic circuits C1 and C2

modulo N , and then comparing those modulo N values with each other to see whether
or not they are equal. Note that using Fact (1.) we can compute the value of each
arithmetic circuit modulo N , by inductively computing the value modulo N at each
gate in each circuit in a “bottom up” fashion, starting from gate 0, then gate 1, etc.

• How large (i.e., how many bits long) should the random number N be, so that we can,
on the one hand, compute the values of both circuits efficiently (in time polynomial
in n) and, on the other hand, still be sure that if the two arithmetic circuits do not
describe the same number, then there is a “reasonably good probability” that their
value modulo N will be different? (Use Facts (2.), (3.), and (4.) for this.)

• Finally, use Fact (5.) to “amplify” the success probability of the algorithm to (1− 1
2n

),
by using repetitions.

Food for thought: can you devise a deterministic polynomial time algorithm for the
same decision problem? (Hint: you would immediately become famous if you could do so.)

Kousha Etessami

4


